Skip to content
Snippets Groups Projects
Select Git revision
  • da661267398869a553b7f67d739d360aaa1361b6
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

blkdev.h

Blame
  • blkdev.h 60.14 KiB
    /* SPDX-License-Identifier: GPL-2.0 */
    #ifndef _LINUX_BLKDEV_H
    #define _LINUX_BLKDEV_H
    
    #include <linux/sched.h>
    #include <linux/sched/clock.h>
    
    #ifdef CONFIG_BLOCK
    
    #include <linux/major.h>
    #include <linux/genhd.h>
    #include <linux/list.h>
    #include <linux/llist.h>
    #include <linux/timer.h>
    #include <linux/workqueue.h>
    #include <linux/pagemap.h>
    #include <linux/backing-dev-defs.h>
    #include <linux/wait.h>
    #include <linux/mempool.h>
    #include <linux/pfn.h>
    #include <linux/bio.h>
    #include <linux/stringify.h>
    #include <linux/gfp.h>
    #include <linux/bsg.h>
    #include <linux/smp.h>
    #include <linux/rcupdate.h>
    #include <linux/percpu-refcount.h>
    #include <linux/scatterlist.h>
    #include <linux/blkzoned.h>
    #include <linux/seqlock.h>
    #include <linux/u64_stats_sync.h>
    
    struct module;
    struct scsi_ioctl_command;
    
    struct request_queue;
    struct elevator_queue;
    struct blk_trace;
    struct request;
    struct sg_io_hdr;
    struct bsg_job;
    struct blkcg_gq;
    struct blk_flush_queue;
    struct pr_ops;
    struct rq_wb;
    struct blk_queue_stats;
    struct blk_stat_callback;
    
    #define BLKDEV_MIN_RQ	4
    #define BLKDEV_MAX_RQ	128	/* Default maximum */
    
    /* Must be consistent with blk_mq_poll_stats_bkt() */
    #define BLK_MQ_POLL_STATS_BKTS 16
    
    /*
     * Maximum number of blkcg policies allowed to be registered concurrently.
     * Defined here to simplify include dependency.
     */
    #define BLKCG_MAX_POLS		3
    
    typedef void (rq_end_io_fn)(struct request *, blk_status_t);
    
    #define BLK_RL_SYNCFULL		(1U << 0)
    #define BLK_RL_ASYNCFULL	(1U << 1)
    
    struct request_list {
    	struct request_queue	*q;	/* the queue this rl belongs to */
    #ifdef CONFIG_BLK_CGROUP
    	struct blkcg_gq		*blkg;	/* blkg this request pool belongs to */
    #endif
    	/*
    	 * count[], starved[], and wait[] are indexed by
    	 * BLK_RW_SYNC/BLK_RW_ASYNC
    	 */
    	int			count[2];
    	int			starved[2];
    	mempool_t		*rq_pool;
    	wait_queue_head_t	wait[2];
    	unsigned int		flags;
    };
    
    /*
     * request flags */
    typedef __u32 __bitwise req_flags_t;
    
    /* elevator knows about this request */
    #define RQF_SORTED		((__force req_flags_t)(1 << 0))
    /* drive already may have started this one */
    #define RQF_STARTED		((__force req_flags_t)(1 << 1))
    /* uses tagged queueing */
    #define RQF_QUEUED		((__force req_flags_t)(1 << 2))
    /* may not be passed by ioscheduler */
    #define RQF_SOFTBARRIER		((__force req_flags_t)(1 << 3))
    /* request for flush sequence */
    #define RQF_FLUSH_SEQ		((__force req_flags_t)(1 << 4))
    /* merge of different types, fail separately */
    #define RQF_MIXED_MERGE		((__force req_flags_t)(1 << 5))
    /* track inflight for MQ */
    #define RQF_MQ_INFLIGHT		((__force req_flags_t)(1 << 6))
    /* don't call prep for this one */
    #define RQF_DONTPREP		((__force req_flags_t)(1 << 7))
    /* set for "ide_preempt" requests and also for requests for which the SCSI
       "quiesce" state must be ignored. */
    #define RQF_PREEMPT		((__force req_flags_t)(1 << 8))
    /* contains copies of user pages */
    #define RQF_COPY_USER		((__force req_flags_t)(1 << 9))
    /* vaguely specified driver internal error.  Ignored by the block layer */
    #define RQF_FAILED		((__force req_flags_t)(1 << 10))
    /* don't warn about errors */
    #define RQF_QUIET		((__force req_flags_t)(1 << 11))
    /* elevator private data attached */
    #define RQF_ELVPRIV		((__force req_flags_t)(1 << 12))
    /* account I/O stat */
    #define RQF_IO_STAT		((__force req_flags_t)(1 << 13))
    /* request came from our alloc pool */
    #define RQF_ALLOCED		((__force req_flags_t)(1 << 14))
    /* runtime pm request */
    #define RQF_PM			((__force req_flags_t)(1 << 15))
    /* on IO scheduler merge hash */
    #define RQF_HASHED		((__force req_flags_t)(1 << 16))
    /* IO stats tracking on */
    #define RQF_STATS		((__force req_flags_t)(1 << 17))
    /* Look at ->special_vec for the actual data payload instead of the
       bio chain. */
    #define RQF_SPECIAL_PAYLOAD	((__force req_flags_t)(1 << 18))
    /* The per-zone write lock is held for this request */
    #define RQF_ZONE_WRITE_LOCKED	((__force req_flags_t)(1 << 19))
    /* already slept for hybrid poll */
    #define RQF_MQ_POLL_SLEPT	((__force req_flags_t)(1 << 20))
    /* ->timeout has been called, don't expire again */
    #define RQF_TIMED_OUT		((__force req_flags_t)(1 << 21))
    
    /* flags that prevent us from merging requests: */
    #define RQF_NOMERGE_FLAGS \
    	(RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
    
    /*
     * Request state for blk-mq.
     */
    enum mq_rq_state {
    	MQ_RQ_IDLE		= 0,
    	MQ_RQ_IN_FLIGHT		= 1,
    	MQ_RQ_COMPLETE		= 2,
    };
    
    /*
     * Try to put the fields that are referenced together in the same cacheline.
     *
     * If you modify this structure, make sure to update blk_rq_init() and
     * especially blk_mq_rq_ctx_init() to take care of the added fields.
     */
    struct request {
    	struct request_queue *q;
    	struct blk_mq_ctx *mq_ctx;
    
    	int cpu;
    	unsigned int cmd_flags;		/* op and common flags */
    	req_flags_t rq_flags;
    
    	int internal_tag;
    
    	/* the following two fields are internal, NEVER access directly */
    	unsigned int __data_len;	/* total data len */
    	int tag;
    	sector_t __sector;		/* sector cursor */
    
    	struct bio *bio;
    	struct bio *biotail;
    
    	struct list_head queuelist;
    
    	/*
    	 * The hash is used inside the scheduler, and killed once the
    	 * request reaches the dispatch list. The ipi_list is only used
    	 * to queue the request for softirq completion, which is long
    	 * after the request has been unhashed (and even removed from
    	 * the dispatch list).
    	 */
    	union {
    		struct hlist_node hash;	/* merge hash */
    		struct list_head ipi_list;
    	};
    
    	/*
    	 * The rb_node is only used inside the io scheduler, requests
    	 * are pruned when moved to the dispatch queue. So let the
    	 * completion_data share space with the rb_node.
    	 */
    	union {
    		struct rb_node rb_node;	/* sort/lookup */
    		struct bio_vec special_vec;
    		void *completion_data;
    		int error_count; /* for legacy drivers, don't use */
    	};
    
    	/*
    	 * Three pointers are available for the IO schedulers, if they need
    	 * more they have to dynamically allocate it.  Flush requests are
    	 * never put on the IO scheduler. So let the flush fields share
    	 * space with the elevator data.
    	 */
    	union {
    		struct {
    			struct io_cq		*icq;
    			void			*priv[2];
    		} elv;
    
    		struct {
    			unsigned int		seq;
    			struct list_head	list;
    			rq_end_io_fn		*saved_end_io;
    		} flush;
    	};
    
    	struct gendisk *rq_disk;
    	struct hd_struct *part;
    	/* Time that I/O was submitted to the kernel. */
    	u64 start_time_ns;
    	/* Time that I/O was submitted to the device. */
    	u64 io_start_time_ns;
    
    #ifdef CONFIG_BLK_WBT
    	unsigned short wbt_flags;
    #endif
    #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
    	unsigned short throtl_size;
    #endif
    
    	/*
    	 * Number of scatter-gather DMA addr+len pairs after
    	 * physical address coalescing is performed.
    	 */
    	unsigned short nr_phys_segments;
    
    #if defined(CONFIG_BLK_DEV_INTEGRITY)
    	unsigned short nr_integrity_segments;
    #endif
    
    	unsigned short write_hint;
    	unsigned short ioprio;
    
    	void *special;		/* opaque pointer available for LLD use */
    
    	unsigned int extra_len;	/* length of alignment and padding */
    
    	enum mq_rq_state state;
    	refcount_t ref;
    
    	unsigned int timeout;
    
    	/* access through blk_rq_set_deadline, blk_rq_deadline */
    	unsigned long __deadline;
    
    	struct list_head timeout_list;
    
    	union {
    		struct __call_single_data csd;
    		u64 fifo_time;
    	};
    
    	/*
    	 * completion callback.
    	 */
    	rq_end_io_fn *end_io;
    	void *end_io_data;
    
    	/* for bidi */
    	struct request *next_rq;
    
    #ifdef CONFIG_BLK_CGROUP
    	struct request_list *rl;		/* rl this rq is alloced from */
    #endif
    };
    
    static inline bool blk_op_is_scsi(unsigned int op)
    {
    	return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
    }
    
    static inline bool blk_op_is_private(unsigned int op)
    {
    	return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
    }
    
    static inline bool blk_rq_is_scsi(struct request *rq)
    {
    	return blk_op_is_scsi(req_op(rq));
    }
    
    static inline bool blk_rq_is_private(struct request *rq)
    {
    	return blk_op_is_private(req_op(rq));
    }
    
    static inline bool blk_rq_is_passthrough(struct request *rq)
    {
    	return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
    }
    
    static inline bool bio_is_passthrough(struct bio *bio)
    {
    	unsigned op = bio_op(bio);
    
    	return blk_op_is_scsi(op) || blk_op_is_private(op);
    }
    
    static inline unsigned short req_get_ioprio(struct request *req)
    {
    	return req->ioprio;
    }
    
    #include <linux/elevator.h>
    
    struct blk_queue_ctx;
    
    typedef void (request_fn_proc) (struct request_queue *q);
    typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
    typedef bool (poll_q_fn) (struct request_queue *q, blk_qc_t);
    typedef int (prep_rq_fn) (struct request_queue *, struct request *);
    typedef void (unprep_rq_fn) (struct request_queue *, struct request *);
    
    struct bio_vec;
    typedef void (softirq_done_fn)(struct request *);
    typedef int (dma_drain_needed_fn)(struct request *);
    typedef int (lld_busy_fn) (struct request_queue *q);
    typedef int (bsg_job_fn) (struct bsg_job *);
    typedef int (init_rq_fn)(struct request_queue *, struct request *, gfp_t);
    typedef void (exit_rq_fn)(struct request_queue *, struct request *);
    
    enum blk_eh_timer_return {
    	BLK_EH_DONE,		/* drivers has completed the command */
    	BLK_EH_RESET_TIMER,	/* reset timer and try again */
    };
    
    typedef enum blk_eh_timer_return (rq_timed_out_fn)(struct request *);
    
    enum blk_queue_state {
    	Queue_down,
    	Queue_up,
    };
    
    struct blk_queue_tag {
    	struct request **tag_index;	/* map of busy tags */
    	unsigned long *tag_map;		/* bit map of free/busy tags */
    	int max_depth;			/* what we will send to device */
    	int real_max_depth;		/* what the array can hold */
    	atomic_t refcnt;		/* map can be shared */
    	int alloc_policy;		/* tag allocation policy */
    	int next_tag;			/* next tag */
    };
    #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
    #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
    
    #define BLK_SCSI_MAX_CMDS	(256)
    #define BLK_SCSI_CMD_PER_LONG	(BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
    
    /*
     * Zoned block device models (zoned limit).
     */
    enum blk_zoned_model {
    	BLK_ZONED_NONE,	/* Regular block device */
    	BLK_ZONED_HA,	/* Host-aware zoned block device */
    	BLK_ZONED_HM,	/* Host-managed zoned block device */
    };
    
    struct queue_limits {
    	unsigned long		bounce_pfn;
    	unsigned long		seg_boundary_mask;
    	unsigned long		virt_boundary_mask;
    
    	unsigned int		max_hw_sectors;
    	unsigned int		max_dev_sectors;
    	unsigned int		chunk_sectors;
    	unsigned int		max_sectors;
    	unsigned int		max_segment_size;
    	unsigned int		physical_block_size;
    	unsigned int		alignment_offset;
    	unsigned int		io_min;
    	unsigned int		io_opt;
    	unsigned int		max_discard_sectors;
    	unsigned int		max_hw_discard_sectors;
    	unsigned int		max_write_same_sectors;
    	unsigned int		max_write_zeroes_sectors;
    	unsigned int		discard_granularity;
    	unsigned int		discard_alignment;
    
    	unsigned short		logical_block_size;
    	unsigned short		max_segments;
    	unsigned short		max_integrity_segments;
    	unsigned short		max_discard_segments;
    
    	unsigned char		misaligned;
    	unsigned char		discard_misaligned;
    	unsigned char		cluster;
    	unsigned char		raid_partial_stripes_expensive;
    	enum blk_zoned_model	zoned;
    };
    
    #ifdef CONFIG_BLK_DEV_ZONED
    
    struct blk_zone_report_hdr {
    	unsigned int	nr_zones;
    	u8		padding[60];
    };
    
    extern int blkdev_report_zones(struct block_device *bdev,
    			       sector_t sector, struct blk_zone *zones,
    			       unsigned int *nr_zones, gfp_t gfp_mask);
    extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
    			      sector_t nr_sectors, gfp_t gfp_mask);
    
    extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
    				     unsigned int cmd, unsigned long arg);
    extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
    				    unsigned int cmd, unsigned long arg);
    
    #else /* CONFIG_BLK_DEV_ZONED */
    
    static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
    					    fmode_t mode, unsigned int cmd,
    					    unsigned long arg)
    {
    	return -ENOTTY;
    }
    
    static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
    					   fmode_t mode, unsigned int cmd,
    					   unsigned long arg)
    {
    	return -ENOTTY;
    }
    
    #endif /* CONFIG_BLK_DEV_ZONED */
    
    struct request_queue {
    	/*
    	 * Together with queue_head for cacheline sharing
    	 */
    	struct list_head	queue_head;
    	struct request		*last_merge;
    	struct elevator_queue	*elevator;
    	int			nr_rqs[2];	/* # allocated [a]sync rqs */
    	int			nr_rqs_elvpriv;	/* # allocated rqs w/ elvpriv */
    
    	atomic_t		shared_hctx_restart;
    
    	struct blk_queue_stats	*stats;
    	struct rq_wb		*rq_wb;
    
    	/*
    	 * If blkcg is not used, @q->root_rl serves all requests.  If blkcg
    	 * is used, root blkg allocates from @q->root_rl and all other
    	 * blkgs from their own blkg->rl.  Which one to use should be
    	 * determined using bio_request_list().
    	 */
    	struct request_list	root_rl;
    
    	request_fn_proc		*request_fn;
    	make_request_fn		*make_request_fn;
    	poll_q_fn		*poll_fn;
    	prep_rq_fn		*prep_rq_fn;
    	unprep_rq_fn		*unprep_rq_fn;
    	softirq_done_fn		*softirq_done_fn;
    	rq_timed_out_fn		*rq_timed_out_fn;
    	dma_drain_needed_fn	*dma_drain_needed;
    	lld_busy_fn		*lld_busy_fn;
    	/* Called just after a request is allocated */
    	init_rq_fn		*init_rq_fn;
    	/* Called just before a request is freed */
    	exit_rq_fn		*exit_rq_fn;
    	/* Called from inside blk_get_request() */
    	void (*initialize_rq_fn)(struct request *rq);
    
    	const struct blk_mq_ops	*mq_ops;
    
    	unsigned int		*mq_map;
    
    	/* sw queues */
    	struct blk_mq_ctx __percpu	*queue_ctx;
    	unsigned int		nr_queues;
    
    	unsigned int		queue_depth;
    
    	/* hw dispatch queues */
    	struct blk_mq_hw_ctx	**queue_hw_ctx;
    	unsigned int		nr_hw_queues;
    
    	/*
    	 * Dispatch queue sorting
    	 */
    	sector_t		end_sector;
    	struct request		*boundary_rq;
    
    	/*
    	 * Delayed queue handling
    	 */
    	struct delayed_work	delay_work;
    
    	struct backing_dev_info	*backing_dev_info;
    
    	/*
    	 * The queue owner gets to use this for whatever they like.
    	 * ll_rw_blk doesn't touch it.
    	 */
    	void			*queuedata;
    
    	/*
    	 * various queue flags, see QUEUE_* below
    	 */
    	unsigned long		queue_flags;
    
    	/*
    	 * ida allocated id for this queue.  Used to index queues from
    	 * ioctx.
    	 */
    	int			id;
    
    	/*
    	 * queue needs bounce pages for pages above this limit
    	 */
    	gfp_t			bounce_gfp;
    
    	/*
    	 * protects queue structures from reentrancy. ->__queue_lock should
    	 * _never_ be used directly, it is queue private. always use
    	 * ->queue_lock.
    	 */
    	spinlock_t		__queue_lock;
    	spinlock_t		*queue_lock;
    
    	/*
    	 * queue kobject
    	 */
    	struct kobject kobj;
    
    	/*
    	 * mq queue kobject
    	 */
    	struct kobject mq_kobj;
    
    #ifdef  CONFIG_BLK_DEV_INTEGRITY
    	struct blk_integrity integrity;
    #endif	/* CONFIG_BLK_DEV_INTEGRITY */
    
    #ifdef CONFIG_PM
    	struct device		*dev;
    	int			rpm_status;
    	unsigned int		nr_pending;
    #endif
    
    	/*
    	 * queue settings
    	 */
    	unsigned long		nr_requests;	/* Max # of requests */
    	unsigned int		nr_congestion_on;
    	unsigned int		nr_congestion_off;
    	unsigned int		nr_batching;
    
    	unsigned int		dma_drain_size;
    	void			*dma_drain_buffer;
    	unsigned int		dma_pad_mask;
    	unsigned int		dma_alignment;
    
    	struct blk_queue_tag	*queue_tags;
    	struct list_head	tag_busy_list;
    
    	unsigned int		nr_sorted;
    	unsigned int		in_flight[2];
    
    	/*
    	 * Number of active block driver functions for which blk_drain_queue()
    	 * must wait. Must be incremented around functions that unlock the
    	 * queue_lock internally, e.g. scsi_request_fn().
    	 */
    	unsigned int		request_fn_active;
    
    	unsigned int		rq_timeout;
    	int			poll_nsec;
    
    	struct blk_stat_callback	*poll_cb;
    	struct blk_rq_stat	poll_stat[BLK_MQ_POLL_STATS_BKTS];
    
    	struct timer_list	timeout;
    	struct work_struct	timeout_work;
    	struct list_head	timeout_list;
    
    	struct list_head	icq_list;
    #ifdef CONFIG_BLK_CGROUP
    	DECLARE_BITMAP		(blkcg_pols, BLKCG_MAX_POLS);
    	struct blkcg_gq		*root_blkg;
    	struct list_head	blkg_list;
    #endif
    
    	struct queue_limits	limits;
    
    	/*
    	 * Zoned block device information for request dispatch control.
    	 * nr_zones is the total number of zones of the device. This is always
    	 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
    	 * bits which indicates if a zone is conventional (bit clear) or
    	 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
    	 * bits which indicates if a zone is write locked, that is, if a write
    	 * request targeting the zone was dispatched. All three fields are
    	 * initialized by the low level device driver (e.g. scsi/sd.c).
    	 * Stacking drivers (device mappers) may or may not initialize
    	 * these fields.
    	 *
    	 * Reads of this information must be protected with blk_queue_enter() /
    	 * blk_queue_exit(). Modifying this information is only allowed while
    	 * no requests are being processed. See also blk_mq_freeze_queue() and
    	 * blk_mq_unfreeze_queue().
    	 */
    	unsigned int		nr_zones;
    	unsigned long		*seq_zones_bitmap;
    	unsigned long		*seq_zones_wlock;
    
    	/*
    	 * sg stuff
    	 */
    	unsigned int		sg_timeout;
    	unsigned int		sg_reserved_size;
    	int			node;
    #ifdef CONFIG_BLK_DEV_IO_TRACE
    	struct blk_trace	*blk_trace;
    	struct mutex		blk_trace_mutex;
    #endif
    	/*
    	 * for flush operations
    	 */
    	struct blk_flush_queue	*fq;
    
    	struct list_head	requeue_list;
    	spinlock_t		requeue_lock;
    	struct delayed_work	requeue_work;
    
    	struct mutex		sysfs_lock;
    
    	int			bypass_depth;
    	atomic_t		mq_freeze_depth;
    
    #if defined(CONFIG_BLK_DEV_BSG)
    	bsg_job_fn		*bsg_job_fn;
    	struct bsg_class_device bsg_dev;
    #endif
    
    #ifdef CONFIG_BLK_DEV_THROTTLING
    	/* Throttle data */
    	struct throtl_data *td;
    #endif
    	struct rcu_head		rcu_head;
    	wait_queue_head_t	mq_freeze_wq;
    	struct percpu_ref	q_usage_counter;
    	struct list_head	all_q_node;
    
    	struct blk_mq_tag_set	*tag_set;
    	struct list_head	tag_set_list;
    	struct bio_set		bio_split;
    
    #ifdef CONFIG_BLK_DEBUG_FS
    	struct dentry		*debugfs_dir;
    	struct dentry		*sched_debugfs_dir;
    #endif
    
    	bool			mq_sysfs_init_done;
    
    	size_t			cmd_size;
    	void			*rq_alloc_data;
    
    	struct work_struct	release_work;
    
    #define BLK_MAX_WRITE_HINTS	5
    	u64			write_hints[BLK_MAX_WRITE_HINTS];
    };
    
    #define QUEUE_FLAG_QUEUED	0	/* uses generic tag queueing */
    #define QUEUE_FLAG_STOPPED	1	/* queue is stopped */
    #define QUEUE_FLAG_DYING	2	/* queue being torn down */
    #define QUEUE_FLAG_BYPASS	3	/* act as dumb FIFO queue */
    #define QUEUE_FLAG_BIDI		4	/* queue supports bidi requests */
    #define QUEUE_FLAG_NOMERGES     5	/* disable merge attempts */
    #define QUEUE_FLAG_SAME_COMP	6	/* complete on same CPU-group */
    #define QUEUE_FLAG_FAIL_IO	7	/* fake timeout */
    #define QUEUE_FLAG_NONROT	9	/* non-rotational device (SSD) */
    #define QUEUE_FLAG_VIRT        QUEUE_FLAG_NONROT /* paravirt device */
    #define QUEUE_FLAG_IO_STAT     10	/* do IO stats */
    #define QUEUE_FLAG_DISCARD     11	/* supports DISCARD */
    #define QUEUE_FLAG_NOXMERGES   12	/* No extended merges */
    #define QUEUE_FLAG_ADD_RANDOM  13	/* Contributes to random pool */
    #define QUEUE_FLAG_SECERASE    14	/* supports secure erase */
    #define QUEUE_FLAG_SAME_FORCE  15	/* force complete on same CPU */
    #define QUEUE_FLAG_DEAD        16	/* queue tear-down finished */
    #define QUEUE_FLAG_INIT_DONE   17	/* queue is initialized */
    #define QUEUE_FLAG_NO_SG_MERGE 18	/* don't attempt to merge SG segments*/
    #define QUEUE_FLAG_POLL	       19	/* IO polling enabled if set */
    #define QUEUE_FLAG_WC	       20	/* Write back caching */
    #define QUEUE_FLAG_FUA	       21	/* device supports FUA writes */
    #define QUEUE_FLAG_FLUSH_NQ    22	/* flush not queueuable */
    #define QUEUE_FLAG_DAX         23	/* device supports DAX */
    #define QUEUE_FLAG_STATS       24	/* track rq completion times */
    #define QUEUE_FLAG_POLL_STATS  25	/* collecting stats for hybrid polling */
    #define QUEUE_FLAG_REGISTERED  26	/* queue has been registered to a disk */
    #define QUEUE_FLAG_SCSI_PASSTHROUGH 27	/* queue supports SCSI commands */
    #define QUEUE_FLAG_QUIESCED    28	/* queue has been quiesced */
    #define QUEUE_FLAG_PREEMPT_ONLY	29	/* only process REQ_PREEMPT requests */
    
    #define QUEUE_FLAG_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
    				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
    				 (1 << QUEUE_FLAG_ADD_RANDOM))
    
    #define QUEUE_FLAG_MQ_DEFAULT	((1 << QUEUE_FLAG_IO_STAT) |		\
    				 (1 << QUEUE_FLAG_SAME_COMP)	|	\
    				 (1 << QUEUE_FLAG_POLL))
    
    void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
    void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
    bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
    bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q);
    
    #define blk_queue_tagged(q)	test_bit(QUEUE_FLAG_QUEUED, &(q)->queue_flags)
    #define blk_queue_stopped(q)	test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
    #define blk_queue_dying(q)	test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
    #define blk_queue_dead(q)	test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
    #define blk_queue_bypass(q)	test_bit(QUEUE_FLAG_BYPASS, &(q)->queue_flags)
    #define blk_queue_init_done(q)	test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
    #define blk_queue_nomerges(q)	test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
    #define blk_queue_noxmerges(q)	\
    	test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
    #define blk_queue_nonrot(q)	test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
    #define blk_queue_io_stat(q)	test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
    #define blk_queue_add_random(q)	test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
    #define blk_queue_discard(q)	test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
    #define blk_queue_secure_erase(q) \
    	(test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
    #define blk_queue_dax(q)	test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
    #define blk_queue_scsi_passthrough(q)	\
    	test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
    
    #define blk_noretry_request(rq) \
    	((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
    			     REQ_FAILFAST_DRIVER))
    #define blk_queue_quiesced(q)	test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
    #define blk_queue_preempt_only(q)				\
    	test_bit(QUEUE_FLAG_PREEMPT_ONLY, &(q)->queue_flags)
    #define blk_queue_fua(q)	test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
    
    extern int blk_set_preempt_only(struct request_queue *q);
    extern void blk_clear_preempt_only(struct request_queue *q);
    
    static inline int queue_in_flight(struct request_queue *q)
    {
    	return q->in_flight[0] + q->in_flight[1];
    }
    
    static inline bool blk_account_rq(struct request *rq)
    {
    	return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
    }
    
    #define blk_rq_cpu_valid(rq)	((rq)->cpu != -1)
    #define blk_bidi_rq(rq)		((rq)->next_rq != NULL)
    /* rq->queuelist of dequeued request must be list_empty() */
    #define blk_queued_rq(rq)	(!list_empty(&(rq)->queuelist))
    
    #define list_entry_rq(ptr)	list_entry((ptr), struct request, queuelist)
    
    #define rq_data_dir(rq)		(op_is_write(req_op(rq)) ? WRITE : READ)
    
    /*
     * Driver can handle struct request, if it either has an old style
     * request_fn defined, or is blk-mq based.
     */
    static inline bool queue_is_rq_based(struct request_queue *q)
    {
    	return q->request_fn || q->mq_ops;
    }
    
    static inline unsigned int blk_queue_cluster(struct request_queue *q)
    {
    	return q->limits.cluster;
    }
    
    static inline enum blk_zoned_model
    blk_queue_zoned_model(struct request_queue *q)
    {
    	return q->limits.zoned;
    }
    
    static inline bool blk_queue_is_zoned(struct request_queue *q)
    {
    	switch (blk_queue_zoned_model(q)) {
    	case BLK_ZONED_HA:
    	case BLK_ZONED_HM:
    		return true;
    	default:
    		return false;
    	}
    }
    
    static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
    {
    	return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
    }
    
    static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
    {
    	return q->nr_zones;
    }
    
    static inline unsigned int blk_queue_zone_no(struct request_queue *q,
    					     sector_t sector)
    {
    	if (!blk_queue_is_zoned(q))
    		return 0;
    	return sector >> ilog2(q->limits.chunk_sectors);
    }
    
    static inline bool blk_queue_zone_is_seq(struct request_queue *q,
    					 sector_t sector)
    {
    	if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
    		return false;
    	return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
    }
    
    static inline bool rq_is_sync(struct request *rq)
    {
    	return op_is_sync(rq->cmd_flags);
    }
    
    static inline bool blk_rl_full(struct request_list *rl, bool sync)
    {
    	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
    
    	return rl->flags & flag;
    }
    
    static inline void blk_set_rl_full(struct request_list *rl, bool sync)
    {
    	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
    
    	rl->flags |= flag;
    }
    
    static inline void blk_clear_rl_full(struct request_list *rl, bool sync)
    {
    	unsigned int flag = sync ? BLK_RL_SYNCFULL : BLK_RL_ASYNCFULL;
    
    	rl->flags &= ~flag;
    }
    
    static inline bool rq_mergeable(struct request *rq)
    {
    	if (blk_rq_is_passthrough(rq))
    		return false;
    
    	if (req_op(rq) == REQ_OP_FLUSH)
    		return false;
    
    	if (req_op(rq) == REQ_OP_WRITE_ZEROES)
    		return false;
    
    	if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
    		return false;
    	if (rq->rq_flags & RQF_NOMERGE_FLAGS)
    		return false;
    
    	return true;
    }
    
    static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
    {
    	if (bio_page(a) == bio_page(b) &&
    	    bio_offset(a) == bio_offset(b))
    		return true;
    
    	return false;
    }
    
    static inline unsigned int blk_queue_depth(struct request_queue *q)
    {
    	if (q->queue_depth)
    		return q->queue_depth;
    
    	return q->nr_requests;
    }
    
    /*
     * q->prep_rq_fn return values
     */
    enum {
    	BLKPREP_OK,		/* serve it */
    	BLKPREP_KILL,		/* fatal error, kill, return -EIO */
    	BLKPREP_DEFER,		/* leave on queue */
    	BLKPREP_INVALID,	/* invalid command, kill, return -EREMOTEIO */
    };
    
    extern unsigned long blk_max_low_pfn, blk_max_pfn;
    
    /*
     * standard bounce addresses:
     *
     * BLK_BOUNCE_HIGH	: bounce all highmem pages
     * BLK_BOUNCE_ANY	: don't bounce anything
     * BLK_BOUNCE_ISA	: bounce pages above ISA DMA boundary
     */
    
    #if BITS_PER_LONG == 32
    #define BLK_BOUNCE_HIGH		((u64)blk_max_low_pfn << PAGE_SHIFT)
    #else
    #define BLK_BOUNCE_HIGH		-1ULL
    #endif
    #define BLK_BOUNCE_ANY		(-1ULL)
    #define BLK_BOUNCE_ISA		(DMA_BIT_MASK(24))
    
    /*
     * default timeout for SG_IO if none specified
     */
    #define BLK_DEFAULT_SG_TIMEOUT	(60 * HZ)
    #define BLK_MIN_SG_TIMEOUT	(7 * HZ)
    
    struct rq_map_data {
    	struct page **pages;
    	int page_order;
    	int nr_entries;
    	unsigned long offset;
    	int null_mapped;
    	int from_user;
    };
    
    struct req_iterator {
    	struct bvec_iter iter;
    	struct bio *bio;
    };
    
    /* This should not be used directly - use rq_for_each_segment */
    #define for_each_bio(_bio)		\
    	for (; _bio; _bio = _bio->bi_next)
    #define __rq_for_each_bio(_bio, rq)	\
    	if ((rq->bio))			\
    		for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
    
    #define rq_for_each_segment(bvl, _rq, _iter)			\
    	__rq_for_each_bio(_iter.bio, _rq)			\
    		bio_for_each_segment(bvl, _iter.bio, _iter.iter)
    
    #define rq_iter_last(bvec, _iter)				\
    		(_iter.bio->bi_next == NULL &&			\
    		 bio_iter_last(bvec, _iter.iter))
    
    #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
    # error	"You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
    #endif
    #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
    extern void rq_flush_dcache_pages(struct request *rq);
    #else
    static inline void rq_flush_dcache_pages(struct request *rq)
    {
    }
    #endif
    
    extern int blk_register_queue(struct gendisk *disk);
    extern void blk_unregister_queue(struct gendisk *disk);
    extern blk_qc_t generic_make_request(struct bio *bio);
    extern blk_qc_t direct_make_request(struct bio *bio);
    extern void blk_rq_init(struct request_queue *q, struct request *rq);
    extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
    extern void blk_put_request(struct request *);
    extern void __blk_put_request(struct request_queue *, struct request *);
    extern struct request *blk_get_request(struct request_queue *, unsigned int op,
    				       blk_mq_req_flags_t flags);
    extern void blk_requeue_request(struct request_queue *, struct request *);
    extern int blk_lld_busy(struct request_queue *q);
    extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
    			     struct bio_set *bs, gfp_t gfp_mask,
    			     int (*bio_ctr)(struct bio *, struct bio *, void *),
    			     void *data);
    extern void blk_rq_unprep_clone(struct request *rq);
    extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
    				     struct request *rq);
    extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
    extern void blk_delay_queue(struct request_queue *, unsigned long);
    extern void blk_queue_split(struct request_queue *, struct bio **);
    extern void blk_recount_segments(struct request_queue *, struct bio *);
    extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
    extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
    			      unsigned int, void __user *);
    extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
    			  unsigned int, void __user *);
    extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
    			 struct scsi_ioctl_command __user *);
    
    extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
    extern void blk_queue_exit(struct request_queue *q);
    extern void blk_start_queue(struct request_queue *q);
    extern void blk_start_queue_async(struct request_queue *q);
    extern void blk_stop_queue(struct request_queue *q);
    extern void blk_sync_queue(struct request_queue *q);
    extern void __blk_stop_queue(struct request_queue *q);
    extern void __blk_run_queue(struct request_queue *q);
    extern void __blk_run_queue_uncond(struct request_queue *q);
    extern void blk_run_queue(struct request_queue *);
    extern void blk_run_queue_async(struct request_queue *q);
    extern int blk_rq_map_user(struct request_queue *, struct request *,
    			   struct rq_map_data *, void __user *, unsigned long,
    			   gfp_t);
    extern int blk_rq_unmap_user(struct bio *);
    extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
    extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
    			       struct rq_map_data *, const struct iov_iter *,
    			       gfp_t);
    extern void blk_execute_rq(struct request_queue *, struct gendisk *,
    			  struct request *, int);
    extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
    				  struct request *, int, rq_end_io_fn *);
    
    int blk_status_to_errno(blk_status_t status);
    blk_status_t errno_to_blk_status(int errno);
    
    bool blk_poll(struct request_queue *q, blk_qc_t cookie);
    
    static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
    {
    	return bdev->bd_disk->queue;	/* this is never NULL */
    }
    
    /*
     * The basic unit of block I/O is a sector. It is used in a number of contexts
     * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
     * bytes. Variables of type sector_t represent an offset or size that is a
     * multiple of 512 bytes. Hence these two constants.
     */
    #ifndef SECTOR_SHIFT
    #define SECTOR_SHIFT 9
    #endif
    #ifndef SECTOR_SIZE
    #define SECTOR_SIZE (1 << SECTOR_SHIFT)
    #endif
    
    /*
     * blk_rq_pos()			: the current sector
     * blk_rq_bytes()		: bytes left in the entire request
     * blk_rq_cur_bytes()		: bytes left in the current segment
     * blk_rq_err_bytes()		: bytes left till the next error boundary
     * blk_rq_sectors()		: sectors left in the entire request
     * blk_rq_cur_sectors()		: sectors left in the current segment
     */
    static inline sector_t blk_rq_pos(const struct request *rq)
    {
    	return rq->__sector;
    }
    
    static inline unsigned int blk_rq_bytes(const struct request *rq)
    {
    	return rq->__data_len;
    }
    
    static inline int blk_rq_cur_bytes(const struct request *rq)
    {
    	return rq->bio ? bio_cur_bytes(rq->bio) : 0;
    }
    
    extern unsigned int blk_rq_err_bytes(const struct request *rq);
    
    static inline unsigned int blk_rq_sectors(const struct request *rq)
    {
    	return blk_rq_bytes(rq) >> SECTOR_SHIFT;
    }
    
    static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
    {
    	return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
    }
    
    static inline unsigned int blk_rq_zone_no(struct request *rq)
    {
    	return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
    }
    
    static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
    {
    	return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
    }
    
    /*
     * Some commands like WRITE SAME have a payload or data transfer size which
     * is different from the size of the request.  Any driver that supports such
     * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
     * calculate the data transfer size.
     */
    static inline unsigned int blk_rq_payload_bytes(struct request *rq)
    {
    	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
    		return rq->special_vec.bv_len;
    	return blk_rq_bytes(rq);
    }
    
    static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
    						     int op)
    {
    	if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
    		return min(q->limits.max_discard_sectors,
    			   UINT_MAX >> SECTOR_SHIFT);
    
    	if (unlikely(op == REQ_OP_WRITE_SAME))
    		return q->limits.max_write_same_sectors;
    
    	if (unlikely(op == REQ_OP_WRITE_ZEROES))
    		return q->limits.max_write_zeroes_sectors;
    
    	return q->limits.max_sectors;
    }
    
    /*
     * Return maximum size of a request at given offset. Only valid for
     * file system requests.
     */
    static inline unsigned int blk_max_size_offset(struct request_queue *q,
    					       sector_t offset)
    {
    	if (!q->limits.chunk_sectors)
    		return q->limits.max_sectors;
    
    	return q->limits.chunk_sectors -
    			(offset & (q->limits.chunk_sectors - 1));
    }
    
    static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
    						  sector_t offset)
    {
    	struct request_queue *q = rq->q;
    
    	if (blk_rq_is_passthrough(rq))
    		return q->limits.max_hw_sectors;
    
    	if (!q->limits.chunk_sectors ||
    	    req_op(rq) == REQ_OP_DISCARD ||
    	    req_op(rq) == REQ_OP_SECURE_ERASE)
    		return blk_queue_get_max_sectors(q, req_op(rq));
    
    	return min(blk_max_size_offset(q, offset),
    			blk_queue_get_max_sectors(q, req_op(rq)));
    }
    
    static inline unsigned int blk_rq_count_bios(struct request *rq)
    {
    	unsigned int nr_bios = 0;
    	struct bio *bio;
    
    	__rq_for_each_bio(bio, rq)
    		nr_bios++;
    
    	return nr_bios;
    }
    
    /*
     * Request issue related functions.
     */
    extern struct request *blk_peek_request(struct request_queue *q);
    extern void blk_start_request(struct request *rq);
    extern struct request *blk_fetch_request(struct request_queue *q);
    
    void blk_steal_bios(struct bio_list *list, struct request *rq);
    
    /*
     * Request completion related functions.
     *
     * blk_update_request() completes given number of bytes and updates
     * the request without completing it.
     *
     * blk_end_request() and friends.  __blk_end_request() must be called
     * with the request queue spinlock acquired.
     *
     * Several drivers define their own end_request and call
     * blk_end_request() for parts of the original function.
     * This prevents code duplication in drivers.
     */
    extern bool blk_update_request(struct request *rq, blk_status_t error,
    			       unsigned int nr_bytes);
    extern void blk_finish_request(struct request *rq, blk_status_t error);
    extern bool blk_end_request(struct request *rq, blk_status_t error,
    			    unsigned int nr_bytes);
    extern void blk_end_request_all(struct request *rq, blk_status_t error);
    extern bool __blk_end_request(struct request *rq, blk_status_t error,
    			      unsigned int nr_bytes);
    extern void __blk_end_request_all(struct request *rq, blk_status_t error);
    extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
    
    extern void blk_complete_request(struct request *);
    extern void __blk_complete_request(struct request *);
    extern void blk_abort_request(struct request *);
    extern void blk_unprep_request(struct request *);
    
    /*
     * Access functions for manipulating queue properties
     */
    extern struct request_queue *blk_init_queue_node(request_fn_proc *rfn,
    					spinlock_t *lock, int node_id);
    extern struct request_queue *blk_init_queue(request_fn_proc *, spinlock_t *);
    extern int blk_init_allocated_queue(struct request_queue *);
    extern void blk_cleanup_queue(struct request_queue *);
    extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
    extern void blk_queue_bounce_limit(struct request_queue *, u64);
    extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
    extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
    extern void blk_queue_max_segments(struct request_queue *, unsigned short);
    extern void blk_queue_max_discard_segments(struct request_queue *,
    		unsigned short);
    extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
    extern void blk_queue_max_discard_sectors(struct request_queue *q,
    		unsigned int max_discard_sectors);
    extern void blk_queue_max_write_same_sectors(struct request_queue *q,
    		unsigned int max_write_same_sectors);
    extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
    		unsigned int max_write_same_sectors);
    extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
    extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
    extern void blk_queue_alignment_offset(struct request_queue *q,
    				       unsigned int alignment);
    extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
    extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
    extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
    extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
    extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
    extern void blk_set_default_limits(struct queue_limits *lim);
    extern void blk_set_stacking_limits(struct queue_limits *lim);
    extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
    			    sector_t offset);
    extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
    			    sector_t offset);
    extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
    			      sector_t offset);
    extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
    extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
    extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
    extern int blk_queue_dma_drain(struct request_queue *q,
    			       dma_drain_needed_fn *dma_drain_needed,
    			       void *buf, unsigned int size);
    extern void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn);
    extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
    extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
    extern void blk_queue_prep_rq(struct request_queue *, prep_rq_fn *pfn);
    extern void blk_queue_unprep_rq(struct request_queue *, unprep_rq_fn *ufn);
    extern void blk_queue_dma_alignment(struct request_queue *, int);
    extern void blk_queue_update_dma_alignment(struct request_queue *, int);
    extern void blk_queue_softirq_done(struct request_queue *, softirq_done_fn *);
    extern void blk_queue_rq_timed_out(struct request_queue *, rq_timed_out_fn *);
    extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
    extern void blk_queue_flush_queueable(struct request_queue *q, bool queueable);
    extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
    
    /*
     * Number of physical segments as sent to the device.
     *
     * Normally this is the number of discontiguous data segments sent by the
     * submitter.  But for data-less command like discard we might have no
     * actual data segments submitted, but the driver might have to add it's
     * own special payload.  In that case we still return 1 here so that this
     * special payload will be mapped.
     */
    static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
    {
    	if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
    		return 1;
    	return rq->nr_phys_segments;
    }
    
    /*
     * Number of discard segments (or ranges) the driver needs to fill in.
     * Each discard bio merged into a request is counted as one segment.
     */
    static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
    {
    	return max_t(unsigned short, rq->nr_phys_segments, 1);
    }
    
    extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
    extern void blk_dump_rq_flags(struct request *, char *);
    extern long nr_blockdev_pages(void);
    
    bool __must_check blk_get_queue(struct request_queue *);
    struct request_queue *blk_alloc_queue(gfp_t);
    struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
    					   spinlock_t *lock);
    extern void blk_put_queue(struct request_queue *);
    extern void blk_set_queue_dying(struct request_queue *);
    
    /*
     * block layer runtime pm functions
     */
    #ifdef CONFIG_PM
    extern void blk_pm_runtime_init(struct request_queue *q, struct device *dev);
    extern int blk_pre_runtime_suspend(struct request_queue *q);
    extern void blk_post_runtime_suspend(struct request_queue *q, int err);
    extern void blk_pre_runtime_resume(struct request_queue *q);
    extern void blk_post_runtime_resume(struct request_queue *q, int err);
    extern void blk_set_runtime_active(struct request_queue *q);
    #else
    static inline void blk_pm_runtime_init(struct request_queue *q,
    	struct device *dev) {}
    static inline int blk_pre_runtime_suspend(struct request_queue *q)
    {
    	return -ENOSYS;
    }
    static inline void blk_post_runtime_suspend(struct request_queue *q, int err) {}
    static inline void blk_pre_runtime_resume(struct request_queue *q) {}
    static inline void blk_post_runtime_resume(struct request_queue *q, int err) {}
    static inline void blk_set_runtime_active(struct request_queue *q) {}
    #endif
    
    /*
     * blk_plug permits building a queue of related requests by holding the I/O
     * fragments for a short period. This allows merging of sequential requests
     * into single larger request. As the requests are moved from a per-task list to
     * the device's request_queue in a batch, this results in improved scalability
     * as the lock contention for request_queue lock is reduced.
     *
     * It is ok not to disable preemption when adding the request to the plug list
     * or when attempting a merge, because blk_schedule_flush_list() will only flush
     * the plug list when the task sleeps by itself. For details, please see
     * schedule() where blk_schedule_flush_plug() is called.
     */
    struct blk_plug {
    	struct list_head list; /* requests */
    	struct list_head mq_list; /* blk-mq requests */
    	struct list_head cb_list; /* md requires an unplug callback */
    };
    #define BLK_MAX_REQUEST_COUNT 16
    #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
    
    struct blk_plug_cb;
    typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
    struct blk_plug_cb {
    	struct list_head list;
    	blk_plug_cb_fn callback;
    	void *data;
    };
    extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
    					     void *data, int size);
    extern void blk_start_plug(struct blk_plug *);
    extern void blk_finish_plug(struct blk_plug *);
    extern void blk_flush_plug_list(struct blk_plug *, bool);
    
    static inline void blk_flush_plug(struct task_struct *tsk)
    {
    	struct blk_plug *plug = tsk->plug;
    
    	if (plug)
    		blk_flush_plug_list(plug, false);
    }
    
    static inline void blk_schedule_flush_plug(struct task_struct *tsk)
    {
    	struct blk_plug *plug = tsk->plug;
    
    	if (plug)
    		blk_flush_plug_list(plug, true);
    }
    
    static inline bool blk_needs_flush_plug(struct task_struct *tsk)
    {
    	struct blk_plug *plug = tsk->plug;
    
    	return plug &&
    		(!list_empty(&plug->list) ||
    		 !list_empty(&plug->mq_list) ||
    		 !list_empty(&plug->cb_list));
    }
    
    /*
     * tag stuff
     */
    extern int blk_queue_start_tag(struct request_queue *, struct request *);
    extern struct request *blk_queue_find_tag(struct request_queue *, int);
    extern void blk_queue_end_tag(struct request_queue *, struct request *);
    extern int blk_queue_init_tags(struct request_queue *, int, struct blk_queue_tag *, int);
    extern void blk_queue_free_tags(struct request_queue *);
    extern int blk_queue_resize_tags(struct request_queue *, int);
    extern void blk_queue_invalidate_tags(struct request_queue *);
    extern struct blk_queue_tag *blk_init_tags(int, int);
    extern void blk_free_tags(struct blk_queue_tag *);
    
    static inline struct request *blk_map_queue_find_tag(struct blk_queue_tag *bqt,
    						int tag)
    {
    	if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
    		return NULL;
    	return bqt->tag_index[tag];
    }
    
    extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
    extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
    		sector_t nr_sects, gfp_t gfp_mask, struct page *page);
    
    #define BLKDEV_DISCARD_SECURE	(1 << 0)	/* issue a secure erase */
    
    extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
    		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
    extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
    		sector_t nr_sects, gfp_t gfp_mask, int flags,
    		struct bio **biop);
    
    #define BLKDEV_ZERO_NOUNMAP	(1 << 0)  /* do not free blocks */
    #define BLKDEV_ZERO_NOFALLBACK	(1 << 1)  /* don't write explicit zeroes */
    
    extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
    		sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
    		unsigned flags);
    extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
    		sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
    
    static inline int sb_issue_discard(struct super_block *sb, sector_t block,
    		sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
    {
    	return blkdev_issue_discard(sb->s_bdev,
    				    block << (sb->s_blocksize_bits -
    					      SECTOR_SHIFT),
    				    nr_blocks << (sb->s_blocksize_bits -
    						  SECTOR_SHIFT),
    				    gfp_mask, flags);
    }
    static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
    		sector_t nr_blocks, gfp_t gfp_mask)
    {
    	return blkdev_issue_zeroout(sb->s_bdev,
    				    block << (sb->s_blocksize_bits -
    					      SECTOR_SHIFT),
    				    nr_blocks << (sb->s_blocksize_bits -
    						  SECTOR_SHIFT),
    				    gfp_mask, 0);
    }
    
    extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
    
    enum blk_default_limits {
    	BLK_MAX_SEGMENTS	= 128,
    	BLK_SAFE_MAX_SECTORS	= 255,
    	BLK_DEF_MAX_SECTORS	= 2560,
    	BLK_MAX_SEGMENT_SIZE	= 65536,
    	BLK_SEG_BOUNDARY_MASK	= 0xFFFFFFFFUL,
    };
    
    #define blkdev_entry_to_request(entry) list_entry((entry), struct request, queuelist)
    
    static inline unsigned long queue_segment_boundary(struct request_queue *q)
    {
    	return q->limits.seg_boundary_mask;
    }
    
    static inline unsigned long queue_virt_boundary(struct request_queue *q)
    {
    	return q->limits.virt_boundary_mask;
    }
    
    static inline unsigned int queue_max_sectors(struct request_queue *q)
    {
    	return q->limits.max_sectors;
    }
    
    static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
    {
    	return q->limits.max_hw_sectors;
    }
    
    static inline unsigned short queue_max_segments(struct request_queue *q)
    {
    	return q->limits.max_segments;
    }
    
    static inline unsigned short queue_max_discard_segments(struct request_queue *q)
    {
    	return q->limits.max_discard_segments;
    }
    
    static inline unsigned int queue_max_segment_size(struct request_queue *q)
    {
    	return q->limits.max_segment_size;
    }
    
    static inline unsigned short queue_logical_block_size(struct request_queue *q)
    {
    	int retval = 512;
    
    	if (q && q->limits.logical_block_size)
    		retval = q->limits.logical_block_size;
    
    	return retval;
    }
    
    static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
    {
    	return queue_logical_block_size(bdev_get_queue(bdev));
    }
    
    static inline unsigned int queue_physical_block_size(struct request_queue *q)
    {
    	return q->limits.physical_block_size;
    }
    
    static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
    {
    	return queue_physical_block_size(bdev_get_queue(bdev));
    }
    
    static inline unsigned int queue_io_min(struct request_queue *q)
    {
    	return q->limits.io_min;
    }
    
    static inline int bdev_io_min(struct block_device *bdev)
    {
    	return queue_io_min(bdev_get_queue(bdev));
    }
    
    static inline unsigned int queue_io_opt(struct request_queue *q)
    {
    	return q->limits.io_opt;
    }
    
    static inline int bdev_io_opt(struct block_device *bdev)
    {
    	return queue_io_opt(bdev_get_queue(bdev));
    }
    
    static inline int queue_alignment_offset(struct request_queue *q)
    {
    	if (q->limits.misaligned)
    		return -1;
    
    	return q->limits.alignment_offset;
    }
    
    static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
    {
    	unsigned int granularity = max(lim->physical_block_size, lim->io_min);
    	unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
    		<< SECTOR_SHIFT;
    
    	return (granularity + lim->alignment_offset - alignment) % granularity;
    }
    
    static inline int bdev_alignment_offset(struct block_device *bdev)
    {
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	if (q->limits.misaligned)
    		return -1;
    
    	if (bdev != bdev->bd_contains)
    		return bdev->bd_part->alignment_offset;
    
    	return q->limits.alignment_offset;
    }
    
    static inline int queue_discard_alignment(struct request_queue *q)
    {
    	if (q->limits.discard_misaligned)
    		return -1;
    
    	return q->limits.discard_alignment;
    }
    
    static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
    {
    	unsigned int alignment, granularity, offset;
    
    	if (!lim->max_discard_sectors)
    		return 0;
    
    	/* Why are these in bytes, not sectors? */
    	alignment = lim->discard_alignment >> SECTOR_SHIFT;
    	granularity = lim->discard_granularity >> SECTOR_SHIFT;
    	if (!granularity)
    		return 0;
    
    	/* Offset of the partition start in 'granularity' sectors */
    	offset = sector_div(sector, granularity);
    
    	/* And why do we do this modulus *again* in blkdev_issue_discard()? */
    	offset = (granularity + alignment - offset) % granularity;
    
    	/* Turn it back into bytes, gaah */
    	return offset << SECTOR_SHIFT;
    }
    
    static inline int bdev_discard_alignment(struct block_device *bdev)
    {
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	if (bdev != bdev->bd_contains)
    		return bdev->bd_part->discard_alignment;
    
    	return q->limits.discard_alignment;
    }
    
    static inline unsigned int bdev_write_same(struct block_device *bdev)
    {
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	if (q)
    		return q->limits.max_write_same_sectors;
    
    	return 0;
    }
    
    static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
    {
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	if (q)
    		return q->limits.max_write_zeroes_sectors;
    
    	return 0;
    }
    
    static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
    {
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	if (q)
    		return blk_queue_zoned_model(q);
    
    	return BLK_ZONED_NONE;
    }
    
    static inline bool bdev_is_zoned(struct block_device *bdev)
    {
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	if (q)
    		return blk_queue_is_zoned(q);
    
    	return false;
    }
    
    static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
    {
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	if (q)
    		return blk_queue_zone_sectors(q);
    	return 0;
    }
    
    static inline unsigned int bdev_nr_zones(struct block_device *bdev)
    {
    	struct request_queue *q = bdev_get_queue(bdev);
    
    	if (q)
    		return blk_queue_nr_zones(q);
    	return 0;
    }
    
    static inline int queue_dma_alignment(struct request_queue *q)
    {
    	return q ? q->dma_alignment : 511;
    }
    
    static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
    				 unsigned int len)
    {
    	unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
    	return !(addr & alignment) && !(len & alignment);
    }
    
    /* assumes size > 256 */
    static inline unsigned int blksize_bits(unsigned int size)
    {
    	unsigned int bits = 8;
    	do {
    		bits++;
    		size >>= 1;
    	} while (size > 256);
    	return bits;
    }
    
    static inline unsigned int block_size(struct block_device *bdev)
    {
    	return bdev->bd_block_size;
    }
    
    static inline bool queue_flush_queueable(struct request_queue *q)
    {
    	return !test_bit(QUEUE_FLAG_FLUSH_NQ, &q->queue_flags);
    }
    
    typedef struct {struct page *v;} Sector;
    
    unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
    
    static inline void put_dev_sector(Sector p)
    {
    	put_page(p.v);
    }
    
    static inline bool __bvec_gap_to_prev(struct request_queue *q,
    				struct bio_vec *bprv, unsigned int offset)
    {
    	return offset ||
    		((bprv->bv_offset + bprv->bv_len) & queue_virt_boundary(q));
    }
    
    /*
     * Check if adding a bio_vec after bprv with offset would create a gap in
     * the SG list. Most drivers don't care about this, but some do.
     */
    static inline bool bvec_gap_to_prev(struct request_queue *q,
    				struct bio_vec *bprv, unsigned int offset)
    {
    	if (!queue_virt_boundary(q))
    		return false;
    	return __bvec_gap_to_prev(q, bprv, offset);
    }
    
    /*
     * Check if the two bvecs from two bios can be merged to one segment.
     * If yes, no need to check gap between the two bios since the 1st bio
     * and the 1st bvec in the 2nd bio can be handled in one segment.
     */
    static inline bool bios_segs_mergeable(struct request_queue *q,
    		struct bio *prev, struct bio_vec *prev_last_bv,
    		struct bio_vec *next_first_bv)
    {
    	if (!BIOVEC_PHYS_MERGEABLE(prev_last_bv, next_first_bv))
    		return false;
    	if (!BIOVEC_SEG_BOUNDARY(q, prev_last_bv, next_first_bv))
    		return false;
    	if (prev->bi_seg_back_size + next_first_bv->bv_len >
    			queue_max_segment_size(q))
    		return false;
    	return true;
    }
    
    static inline bool bio_will_gap(struct request_queue *q,
    				struct request *prev_rq,
    				struct bio *prev,
    				struct bio *next)
    {
    	if (bio_has_data(prev) && queue_virt_boundary(q)) {
    		struct bio_vec pb, nb;
    
    		/*
    		 * don't merge if the 1st bio starts with non-zero
    		 * offset, otherwise it is quite difficult to respect
    		 * sg gap limit. We work hard to merge a huge number of small
    		 * single bios in case of mkfs.
    		 */
    		if (prev_rq)
    			bio_get_first_bvec(prev_rq->bio, &pb);
    		else
    			bio_get_first_bvec(prev, &pb);
    		if (pb.bv_offset)
    			return true;
    
    		/*
    		 * We don't need to worry about the situation that the
    		 * merged segment ends in unaligned virt boundary:
    		 *
    		 * - if 'pb' ends aligned, the merged segment ends aligned
    		 * - if 'pb' ends unaligned, the next bio must include
    		 *   one single bvec of 'nb', otherwise the 'nb' can't
    		 *   merge with 'pb'
    		 */
    		bio_get_last_bvec(prev, &pb);
    		bio_get_first_bvec(next, &nb);
    
    		if (!bios_segs_mergeable(q, prev, &pb, &nb))
    			return __bvec_gap_to_prev(q, &pb, nb.bv_offset);
    	}
    
    	return false;
    }
    
    static inline bool req_gap_back_merge(struct request *req, struct bio *bio)
    {
    	return bio_will_gap(req->q, req, req->biotail, bio);
    }
    
    static inline bool req_gap_front_merge(struct request *req, struct bio *bio)
    {
    	return bio_will_gap(req->q, NULL, bio, req->bio);
    }
    
    int kblockd_schedule_work(struct work_struct *work);
    int kblockd_schedule_work_on(int cpu, struct work_struct *work);
    int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
    
    #define MODULE_ALIAS_BLOCKDEV(major,minor) \
    	MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
    #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
    	MODULE_ALIAS("block-major-" __stringify(major) "-*")
    
    #if defined(CONFIG_BLK_DEV_INTEGRITY)
    
    enum blk_integrity_flags {
    	BLK_INTEGRITY_VERIFY		= 1 << 0,
    	BLK_INTEGRITY_GENERATE		= 1 << 1,
    	BLK_INTEGRITY_DEVICE_CAPABLE	= 1 << 2,
    	BLK_INTEGRITY_IP_CHECKSUM	= 1 << 3,
    };
    
    struct blk_integrity_iter {
    	void			*prot_buf;
    	void			*data_buf;
    	sector_t		seed;
    	unsigned int		data_size;
    	unsigned short		interval;
    	const char		*disk_name;
    };
    
    typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
    
    struct blk_integrity_profile {
    	integrity_processing_fn		*generate_fn;
    	integrity_processing_fn		*verify_fn;
    	const char			*name;
    };
    
    extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
    extern void blk_integrity_unregister(struct gendisk *);
    extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
    extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
    				   struct scatterlist *);
    extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
    extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
    				   struct request *);
    extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
    				    struct bio *);
    
    static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
    {
    	struct blk_integrity *bi = &disk->queue->integrity;
    
    	if (!bi->profile)
    		return NULL;
    
    	return bi;
    }
    
    static inline
    struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
    {
    	return blk_get_integrity(bdev->bd_disk);
    }
    
    static inline bool blk_integrity_rq(struct request *rq)
    {
    	return rq->cmd_flags & REQ_INTEGRITY;
    }
    
    static inline void blk_queue_max_integrity_segments(struct request_queue *q,
    						    unsigned int segs)
    {
    	q->limits.max_integrity_segments = segs;
    }
    
    static inline unsigned short
    queue_max_integrity_segments(struct request_queue *q)
    {
    	return q->limits.max_integrity_segments;
    }
    
    static inline bool integrity_req_gap_back_merge(struct request *req,
    						struct bio *next)
    {
    	struct bio_integrity_payload *bip = bio_integrity(req->bio);
    	struct bio_integrity_payload *bip_next = bio_integrity(next);
    
    	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
    				bip_next->bip_vec[0].bv_offset);
    }
    
    static inline bool integrity_req_gap_front_merge(struct request *req,
    						 struct bio *bio)
    {
    	struct bio_integrity_payload *bip = bio_integrity(bio);
    	struct bio_integrity_payload *bip_next = bio_integrity(req->bio);
    
    	return bvec_gap_to_prev(req->q, &bip->bip_vec[bip->bip_vcnt - 1],
    				bip_next->bip_vec[0].bv_offset);
    }
    
    #else /* CONFIG_BLK_DEV_INTEGRITY */
    
    struct bio;
    struct block_device;
    struct gendisk;
    struct blk_integrity;
    
    static inline int blk_integrity_rq(struct request *rq)
    {
    	return 0;
    }
    static inline int blk_rq_count_integrity_sg(struct request_queue *q,
    					    struct bio *b)
    {
    	return 0;
    }
    static inline int blk_rq_map_integrity_sg(struct request_queue *q,
    					  struct bio *b,
    					  struct scatterlist *s)
    {
    	return 0;
    }
    static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
    {
    	return NULL;
    }
    static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
    {
    	return NULL;
    }
    static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
    {
    	return 0;
    }
    static inline void blk_integrity_register(struct gendisk *d,
    					 struct blk_integrity *b)
    {
    }
    static inline void blk_integrity_unregister(struct gendisk *d)
    {
    }
    static inline void blk_queue_max_integrity_segments(struct request_queue *q,
    						    unsigned int segs)
    {
    }
    static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
    {
    	return 0;
    }
    static inline bool blk_integrity_merge_rq(struct request_queue *rq,
    					  struct request *r1,
    					  struct request *r2)
    {
    	return true;
    }
    static inline bool blk_integrity_merge_bio(struct request_queue *rq,
    					   struct request *r,
    					   struct bio *b)
    {
    	return true;
    }
    
    static inline bool integrity_req_gap_back_merge(struct request *req,
    						struct bio *next)
    {
    	return false;
    }
    static inline bool integrity_req_gap_front_merge(struct request *req,
    						 struct bio *bio)
    {
    	return false;
    }
    
    #endif /* CONFIG_BLK_DEV_INTEGRITY */
    
    struct block_device_operations {
    	int (*open) (struct block_device *, fmode_t);
    	void (*release) (struct gendisk *, fmode_t);
    	int (*rw_page)(struct block_device *, sector_t, struct page *, bool);
    	int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
    	int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
    	unsigned int (*check_events) (struct gendisk *disk,
    				      unsigned int clearing);
    	/* ->media_changed() is DEPRECATED, use ->check_events() instead */
    	int (*media_changed) (struct gendisk *);
    	void (*unlock_native_capacity) (struct gendisk *);
    	int (*revalidate_disk) (struct gendisk *);
    	int (*getgeo)(struct block_device *, struct hd_geometry *);
    	/* this callback is with swap_lock and sometimes page table lock held */
    	void (*swap_slot_free_notify) (struct block_device *, unsigned long);
    	struct module *owner;
    	const struct pr_ops *pr_ops;
    };
    
    extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
    				 unsigned long);
    extern int bdev_read_page(struct block_device *, sector_t, struct page *);
    extern int bdev_write_page(struct block_device *, sector_t, struct page *,
    						struct writeback_control *);
    
    #ifdef CONFIG_BLK_DEV_ZONED
    bool blk_req_needs_zone_write_lock(struct request *rq);
    void __blk_req_zone_write_lock(struct request *rq);
    void __blk_req_zone_write_unlock(struct request *rq);
    
    static inline void blk_req_zone_write_lock(struct request *rq)
    {
    	if (blk_req_needs_zone_write_lock(rq))
    		__blk_req_zone_write_lock(rq);
    }
    
    static inline void blk_req_zone_write_unlock(struct request *rq)
    {
    	if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
    		__blk_req_zone_write_unlock(rq);
    }
    
    static inline bool blk_req_zone_is_write_locked(struct request *rq)
    {
    	return rq->q->seq_zones_wlock &&
    		test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
    }
    
    static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
    {
    	if (!blk_req_needs_zone_write_lock(rq))
    		return true;
    	return !blk_req_zone_is_write_locked(rq);
    }
    #else
    static inline bool blk_req_needs_zone_write_lock(struct request *rq)
    {
    	return false;
    }
    
    static inline void blk_req_zone_write_lock(struct request *rq)
    {
    }
    
    static inline void blk_req_zone_write_unlock(struct request *rq)
    {
    }
    static inline bool blk_req_zone_is_write_locked(struct request *rq)
    {
    	return false;
    }
    
    static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
    {
    	return true;
    }
    #endif /* CONFIG_BLK_DEV_ZONED */
    
    #else /* CONFIG_BLOCK */
    
    struct block_device;
    
    /*
     * stubs for when the block layer is configured out
     */
    #define buffer_heads_over_limit 0
    
    static inline long nr_blockdev_pages(void)
    {
    	return 0;
    }
    
    struct blk_plug {
    };
    
    static inline void blk_start_plug(struct blk_plug *plug)
    {
    }
    
    static inline void blk_finish_plug(struct blk_plug *plug)
    {
    }
    
    static inline void blk_flush_plug(struct task_struct *task)
    {
    }
    
    static inline void blk_schedule_flush_plug(struct task_struct *task)
    {
    }
    
    
    static inline bool blk_needs_flush_plug(struct task_struct *tsk)
    {
    	return false;
    }
    
    static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
    				     sector_t *error_sector)
    {
    	return 0;
    }
    
    #endif /* CONFIG_BLOCK */
    
    #endif