Select Git revision
postprocess.py 2.72 KiB
# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""post process for 310 inference"""
import os
import numpy as np
from pycocotools.coco import COCO
from src.util import coco_eval, bbox2result_1image, results2json
from src.model_utils.config import config
from src.model_utils.moxing_adapter import moxing_wrapper
dst_width = 1280
dst_height = 768
def modelarts_pre_process():
pass
@moxing_wrapper(pre_process=modelarts_pre_process)
def get_eval_result(anno_path, result_path):
""" get evaluation result of faster rcnn"""
max_num = 128
result_path = result_path
outputs = []
dataset_coco = COCO(anno_path)
img_ids = dataset_coco.getImgIds()
for img_id in img_ids:
file_id = str(img_id).zfill(12)
bbox_result_file = os.path.join(result_path, file_id + "_0.bin")
label_result_file = os.path.join(result_path, file_id + "_1.bin")
mask_result_file = os.path.join(result_path, file_id + "_2.bin")
all_bbox = np.fromfile(bbox_result_file, dtype=np.float16).reshape(80000, 5)
all_label = np.fromfile(label_result_file, dtype=np.int32).reshape(80000, 1)
all_mask = np.fromfile(mask_result_file, dtype=np.bool_).reshape(80000, 1)
all_bbox_squee = np.squeeze(all_bbox)
all_label_squee = np.squeeze(all_label)
all_mask_squee = np.squeeze(all_mask)
all_bboxes_tmp_mask = all_bbox_squee[all_mask_squee, :]
all_labels_tmp_mask = all_label_squee[all_mask_squee]
if all_bboxes_tmp_mask.shape[0] > max_num:
inds = np.argsort(-all_bboxes_tmp_mask[:, -1])
inds = inds[:max_num]
all_bboxes_tmp_mask = all_bboxes_tmp_mask[inds]
all_labels_tmp_mask = all_labels_tmp_mask[inds]
outputs_tmp = bbox2result_1image(all_bboxes_tmp_mask, all_labels_tmp_mask, config.num_classes)
outputs.append(outputs_tmp)
eval_types = ["bbox"]
result_files = results2json(dataset_coco, outputs, "./results.pkl")
coco_eval(config, result_files, eval_types, dataset_coco, single_result=False)
if __name__ == '__main__':
get_eval_result(config.anno_path, config.result_path)