Skip to content
Snippets Groups Projects
Select Git revision
  • e56b8ce363a36fb7b74b80aaa5cc9084f2c908b4
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

tcp.c

Blame
  • tcp.c 99.49 KiB
    /*
     * INET		An implementation of the TCP/IP protocol suite for the LINUX
     *		operating system.  INET is implemented using the  BSD Socket
     *		interface as the means of communication with the user level.
     *
     *		Implementation of the Transmission Control Protocol(TCP).
     *
     * Authors:	Ross Biro
     *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     *		Mark Evans, <evansmp@uhura.aston.ac.uk>
     *		Corey Minyard <wf-rch!minyard@relay.EU.net>
     *		Florian La Roche, <flla@stud.uni-sb.de>
     *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
     *		Linus Torvalds, <torvalds@cs.helsinki.fi>
     *		Alan Cox, <gw4pts@gw4pts.ampr.org>
     *		Matthew Dillon, <dillon@apollo.west.oic.com>
     *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
     *		Jorge Cwik, <jorge@laser.satlink.net>
     *
     * Fixes:
     *		Alan Cox	:	Numerous verify_area() calls
     *		Alan Cox	:	Set the ACK bit on a reset
     *		Alan Cox	:	Stopped it crashing if it closed while
     *					sk->inuse=1 and was trying to connect
     *					(tcp_err()).
     *		Alan Cox	:	All icmp error handling was broken
     *					pointers passed where wrong and the
     *					socket was looked up backwards. Nobody
     *					tested any icmp error code obviously.
     *		Alan Cox	:	tcp_err() now handled properly. It
     *					wakes people on errors. poll
     *					behaves and the icmp error race
     *					has gone by moving it into sock.c
     *		Alan Cox	:	tcp_send_reset() fixed to work for
     *					everything not just packets for
     *					unknown sockets.
     *		Alan Cox	:	tcp option processing.
     *		Alan Cox	:	Reset tweaked (still not 100%) [Had
     *					syn rule wrong]
     *		Herp Rosmanith  :	More reset fixes
     *		Alan Cox	:	No longer acks invalid rst frames.
     *					Acking any kind of RST is right out.
     *		Alan Cox	:	Sets an ignore me flag on an rst
     *					receive otherwise odd bits of prattle
     *					escape still
     *		Alan Cox	:	Fixed another acking RST frame bug.
     *					Should stop LAN workplace lockups.
     *		Alan Cox	: 	Some tidyups using the new skb list
     *					facilities
     *		Alan Cox	:	sk->keepopen now seems to work
     *		Alan Cox	:	Pulls options out correctly on accepts
     *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
     *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
     *					bit to skb ops.
     *		Alan Cox	:	Tidied tcp_data to avoid a potential
     *					nasty.
     *		Alan Cox	:	Added some better commenting, as the
     *					tcp is hard to follow
     *		Alan Cox	:	Removed incorrect check for 20 * psh
     *	Michael O'Reilly	:	ack < copied bug fix.
     *	Johannes Stille		:	Misc tcp fixes (not all in yet).
     *		Alan Cox	:	FIN with no memory -> CRASH
     *		Alan Cox	:	Added socket option proto entries.
     *					Also added awareness of them to accept.
     *		Alan Cox	:	Added TCP options (SOL_TCP)
     *		Alan Cox	:	Switched wakeup calls to callbacks,
     *					so the kernel can layer network
     *					sockets.
     *		Alan Cox	:	Use ip_tos/ip_ttl settings.
     *		Alan Cox	:	Handle FIN (more) properly (we hope).
     *		Alan Cox	:	RST frames sent on unsynchronised
     *					state ack error.
     *		Alan Cox	:	Put in missing check for SYN bit.
     *		Alan Cox	:	Added tcp_select_window() aka NET2E
     *					window non shrink trick.
     *		Alan Cox	:	Added a couple of small NET2E timer
     *					fixes
     *		Charles Hedrick :	TCP fixes
     *		Toomas Tamm	:	TCP window fixes
     *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
     *		Charles Hedrick	:	Rewrote most of it to actually work
     *		Linus		:	Rewrote tcp_read() and URG handling
     *					completely
     *		Gerhard Koerting:	Fixed some missing timer handling
     *		Matthew Dillon  :	Reworked TCP machine states as per RFC
     *		Gerhard Koerting:	PC/TCP workarounds
     *		Adam Caldwell	:	Assorted timer/timing errors
     *		Matthew Dillon	:	Fixed another RST bug
     *		Alan Cox	:	Move to kernel side addressing changes.
     *		Alan Cox	:	Beginning work on TCP fastpathing
     *					(not yet usable)
     *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
     *		Alan Cox	:	TCP fast path debugging
     *		Alan Cox	:	Window clamping
     *		Michael Riepe	:	Bug in tcp_check()
     *		Matt Dillon	:	More TCP improvements and RST bug fixes
     *		Matt Dillon	:	Yet more small nasties remove from the
     *					TCP code (Be very nice to this man if
     *					tcp finally works 100%) 8)
     *		Alan Cox	:	BSD accept semantics.
     *		Alan Cox	:	Reset on closedown bug.
     *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
     *		Michael Pall	:	Handle poll() after URG properly in
     *					all cases.
     *		Michael Pall	:	Undo the last fix in tcp_read_urg()
     *					(multi URG PUSH broke rlogin).
     *		Michael Pall	:	Fix the multi URG PUSH problem in
     *					tcp_readable(), poll() after URG
     *					works now.
     *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
     *					BSD api.
     *		Alan Cox	:	Changed the semantics of sk->socket to
     *					fix a race and a signal problem with
     *					accept() and async I/O.
     *		Alan Cox	:	Relaxed the rules on tcp_sendto().
     *		Yury Shevchuk	:	Really fixed accept() blocking problem.
     *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
     *					clients/servers which listen in on
     *					fixed ports.
     *		Alan Cox	:	Cleaned the above up and shrank it to
     *					a sensible code size.
     *		Alan Cox	:	Self connect lockup fix.
     *		Alan Cox	:	No connect to multicast.
     *		Ross Biro	:	Close unaccepted children on master
     *					socket close.
     *		Alan Cox	:	Reset tracing code.
     *		Alan Cox	:	Spurious resets on shutdown.
     *		Alan Cox	:	Giant 15 minute/60 second timer error
     *		Alan Cox	:	Small whoops in polling before an
     *					accept.
     *		Alan Cox	:	Kept the state trace facility since
     *					it's handy for debugging.
     *		Alan Cox	:	More reset handler fixes.
     *		Alan Cox	:	Started rewriting the code based on
     *					the RFC's for other useful protocol
     *					references see: Comer, KA9Q NOS, and
     *					for a reference on the difference
     *					between specifications and how BSD
     *					works see the 4.4lite source.
     *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
     *					close.
     *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
     *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
     *		Alan Cox	:	Reimplemented timers as per the RFC
     *					and using multiple timers for sanity.
     *		Alan Cox	:	Small bug fixes, and a lot of new
     *					comments.
     *		Alan Cox	:	Fixed dual reader crash by locking
     *					the buffers (much like datagram.c)
     *		Alan Cox	:	Fixed stuck sockets in probe. A probe
     *					now gets fed up of retrying without
     *					(even a no space) answer.
     *		Alan Cox	:	Extracted closing code better
     *		Alan Cox	:	Fixed the closing state machine to
     *					resemble the RFC.
     *		Alan Cox	:	More 'per spec' fixes.
     *		Jorge Cwik	:	Even faster checksumming.
     *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
     *					only frames. At least one pc tcp stack
     *					generates them.
     *		Alan Cox	:	Cache last socket.
     *		Alan Cox	:	Per route irtt.
     *		Matt Day	:	poll()->select() match BSD precisely on error
     *		Alan Cox	:	New buffers
     *		Marc Tamsky	:	Various sk->prot->retransmits and
     *					sk->retransmits misupdating fixed.
     *					Fixed tcp_write_timeout: stuck close,
     *					and TCP syn retries gets used now.
     *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
     *					ack if state is TCP_CLOSED.
     *		Alan Cox	:	Look up device on a retransmit - routes may
     *					change. Doesn't yet cope with MSS shrink right
     *					but it's a start!
     *		Marc Tamsky	:	Closing in closing fixes.
     *		Mike Shaver	:	RFC1122 verifications.
     *		Alan Cox	:	rcv_saddr errors.
     *		Alan Cox	:	Block double connect().
     *		Alan Cox	:	Small hooks for enSKIP.
     *		Alexey Kuznetsov:	Path MTU discovery.
     *		Alan Cox	:	Support soft errors.
     *		Alan Cox	:	Fix MTU discovery pathological case
     *					when the remote claims no mtu!
     *		Marc Tamsky	:	TCP_CLOSE fix.
     *		Colin (G3TNE)	:	Send a reset on syn ack replies in
     *					window but wrong (fixes NT lpd problems)
     *		Pedro Roque	:	Better TCP window handling, delayed ack.
     *		Joerg Reuter	:	No modification of locked buffers in
     *					tcp_do_retransmit()
     *		Eric Schenk	:	Changed receiver side silly window
     *					avoidance algorithm to BSD style
     *					algorithm. This doubles throughput
     *					against machines running Solaris,
     *					and seems to result in general
     *					improvement.
     *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
     *	Willy Konynenberg	:	Transparent proxying support.
     *	Mike McLagan		:	Routing by source
     *		Keith Owens	:	Do proper merging with partial SKB's in
     *					tcp_do_sendmsg to avoid burstiness.
     *		Eric Schenk	:	Fix fast close down bug with
     *					shutdown() followed by close().
     *		Andi Kleen 	:	Make poll agree with SIGIO
     *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
     *					lingertime == 0 (RFC 793 ABORT Call)
     *	Hirokazu Takahashi	:	Use copy_from_user() instead of
     *					csum_and_copy_from_user() if possible.
     *
     *		This program is free software; you can redistribute it and/or
     *		modify it under the terms of the GNU General Public License
     *		as published by the Free Software Foundation; either version
     *		2 of the License, or(at your option) any later version.
     *
     * Description of States:
     *
     *	TCP_SYN_SENT		sent a connection request, waiting for ack
     *
     *	TCP_SYN_RECV		received a connection request, sent ack,
     *				waiting for final ack in three-way handshake.
     *
     *	TCP_ESTABLISHED		connection established
     *
     *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
     *				transmission of remaining buffered data
     *
     *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
     *				to shutdown
     *
     *	TCP_CLOSING		both sides have shutdown but we still have
     *				data we have to finish sending
     *
     *	TCP_TIME_WAIT		timeout to catch resent junk before entering
     *				closed, can only be entered from FIN_WAIT2
     *				or CLOSING.  Required because the other end
     *				may not have gotten our last ACK causing it
     *				to retransmit the data packet (which we ignore)
     *
     *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
     *				us to finish writing our data and to shutdown
     *				(we have to close() to move on to LAST_ACK)
     *
     *	TCP_LAST_ACK		out side has shutdown after remote has
     *				shutdown.  There may still be data in our
     *				buffer that we have to finish sending
     *
     *	TCP_CLOSE		socket is finished
     */
    
    #define pr_fmt(fmt) "TCP: " fmt
    
    #include <crypto/hash.h>
    #include <linux/kernel.h>
    #include <linux/module.h>
    #include <linux/types.h>
    #include <linux/fcntl.h>
    #include <linux/poll.h>
    #include <linux/inet_diag.h>
    #include <linux/init.h>
    #include <linux/fs.h>
    #include <linux/skbuff.h>
    #include <linux/scatterlist.h>
    #include <linux/splice.h>
    #include <linux/net.h>
    #include <linux/socket.h>
    #include <linux/random.h>
    #include <linux/bootmem.h>
    #include <linux/highmem.h>
    #include <linux/swap.h>
    #include <linux/cache.h>
    #include <linux/err.h>
    #include <linux/time.h>
    #include <linux/slab.h>
    #include <linux/errqueue.h>
    #include <linux/static_key.h>
    
    #include <net/icmp.h>
    #include <net/inet_common.h>
    #include <net/tcp.h>
    #include <net/xfrm.h>
    #include <net/ip.h>
    #include <net/sock.h>
    
    #include <linux/uaccess.h>
    #include <asm/ioctls.h>
    #include <net/busy_poll.h>
    
    struct percpu_counter tcp_orphan_count;
    EXPORT_SYMBOL_GPL(tcp_orphan_count);
    
    long sysctl_tcp_mem[3] __read_mostly;
    EXPORT_SYMBOL(sysctl_tcp_mem);
    
    atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
    EXPORT_SYMBOL(tcp_memory_allocated);
    
    #if IS_ENABLED(CONFIG_SMC)
    DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
    EXPORT_SYMBOL(tcp_have_smc);
    #endif
    
    /*
     * Current number of TCP sockets.
     */
    struct percpu_counter tcp_sockets_allocated;
    EXPORT_SYMBOL(tcp_sockets_allocated);
    
    /*
     * TCP splice context
     */
    struct tcp_splice_state {
    	struct pipe_inode_info *pipe;
    	size_t len;
    	unsigned int flags;
    };
    
    /*
     * Pressure flag: try to collapse.
     * Technical note: it is used by multiple contexts non atomically.
     * All the __sk_mem_schedule() is of this nature: accounting
     * is strict, actions are advisory and have some latency.
     */
    unsigned long tcp_memory_pressure __read_mostly;
    EXPORT_SYMBOL_GPL(tcp_memory_pressure);
    
    void tcp_enter_memory_pressure(struct sock *sk)
    {
    	unsigned long val;
    
    	if (tcp_memory_pressure)
    		return;
    	val = jiffies;
    
    	if (!val)
    		val--;
    	if (!cmpxchg(&tcp_memory_pressure, 0, val))
    		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
    }
    EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
    
    void tcp_leave_memory_pressure(struct sock *sk)
    {
    	unsigned long val;
    
    	if (!tcp_memory_pressure)
    		return;
    	val = xchg(&tcp_memory_pressure, 0);
    	if (val)
    		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
    			      jiffies_to_msecs(jiffies - val));
    }
    EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
    
    /* Convert seconds to retransmits based on initial and max timeout */
    static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
    {
    	u8 res = 0;
    
    	if (seconds > 0) {
    		int period = timeout;
    
    		res = 1;
    		while (seconds > period && res < 255) {
    			res++;
    			timeout <<= 1;
    			if (timeout > rto_max)
    				timeout = rto_max;
    			period += timeout;
    		}
    	}
    	return res;
    }
    
    /* Convert retransmits to seconds based on initial and max timeout */
    static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
    {
    	int period = 0;
    
    	if (retrans > 0) {
    		period = timeout;
    		while (--retrans) {
    			timeout <<= 1;
    			if (timeout > rto_max)
    				timeout = rto_max;
    			period += timeout;
    		}
    	}
    	return period;
    }
    
    static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
    {
    	u32 rate = READ_ONCE(tp->rate_delivered);
    	u32 intv = READ_ONCE(tp->rate_interval_us);
    	u64 rate64 = 0;
    
    	if (rate && intv) {
    		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
    		do_div(rate64, intv);
    	}
    	return rate64;
    }
    
    /* Address-family independent initialization for a tcp_sock.
     *
     * NOTE: A lot of things set to zero explicitly by call to
     *       sk_alloc() so need not be done here.
     */
    void tcp_init_sock(struct sock *sk)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	tp->out_of_order_queue = RB_ROOT;
    	sk->tcp_rtx_queue = RB_ROOT;
    	tcp_init_xmit_timers(sk);
    	INIT_LIST_HEAD(&tp->tsq_node);
    	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
    
    	icsk->icsk_rto = TCP_TIMEOUT_INIT;
    	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
    	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
    
    	/* So many TCP implementations out there (incorrectly) count the
    	 * initial SYN frame in their delayed-ACK and congestion control
    	 * algorithms that we must have the following bandaid to talk
    	 * efficiently to them.  -DaveM
    	 */
    	tp->snd_cwnd = TCP_INIT_CWND;
    
    	/* There's a bubble in the pipe until at least the first ACK. */
    	tp->app_limited = ~0U;
    
    	/* See draft-stevens-tcpca-spec-01 for discussion of the
    	 * initialization of these values.
    	 */
    	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
    	tp->snd_cwnd_clamp = ~0;
    	tp->mss_cache = TCP_MSS_DEFAULT;
    
    	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
    	tcp_assign_congestion_control(sk);
    
    	tp->tsoffset = 0;
    	tp->rack.reo_wnd_steps = 1;
    
    	sk->sk_state = TCP_CLOSE;
    
    	sk->sk_write_space = sk_stream_write_space;
    	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
    
    	icsk->icsk_sync_mss = tcp_sync_mss;
    
    	sk->sk_sndbuf = sock_net(sk)->ipv4.sysctl_tcp_wmem[1];
    	sk->sk_rcvbuf = sock_net(sk)->ipv4.sysctl_tcp_rmem[1];
    
    	sk_sockets_allocated_inc(sk);
    	sk->sk_route_forced_caps = NETIF_F_GSO;
    }
    EXPORT_SYMBOL(tcp_init_sock);
    
    void tcp_init_transfer(struct sock *sk, int bpf_op)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    
    	tcp_mtup_init(sk);
    	icsk->icsk_af_ops->rebuild_header(sk);
    	tcp_init_metrics(sk);
    	tcp_call_bpf(sk, bpf_op, 0, NULL);
    	tcp_init_congestion_control(sk);
    	tcp_init_buffer_space(sk);
    }
    
    static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
    {
    	struct sk_buff *skb = tcp_write_queue_tail(sk);
    
    	if (tsflags && skb) {
    		struct skb_shared_info *shinfo = skb_shinfo(skb);
    		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
    
    		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
    		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
    			tcb->txstamp_ack = 1;
    		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
    			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
    	}
    }
    
    static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
    					  int target, struct sock *sk)
    {
    	return (tp->rcv_nxt - tp->copied_seq >= target) ||
    		(sk->sk_prot->stream_memory_read ?
    		sk->sk_prot->stream_memory_read(sk) : false);
    }
    
    /*
     *	Wait for a TCP event.
     *
     *	Note that we don't need to lock the socket, as the upper poll layers
     *	take care of normal races (between the test and the event) and we don't
     *	go look at any of the socket buffers directly.
     */
    __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
    {
    	__poll_t mask;
    	struct sock *sk = sock->sk;
    	const struct tcp_sock *tp = tcp_sk(sk);
    	int state;
    
    	sock_poll_wait(file, sk_sleep(sk), wait);
    
    	state = inet_sk_state_load(sk);
    	if (state == TCP_LISTEN)
    		return inet_csk_listen_poll(sk);
    
    	/* Socket is not locked. We are protected from async events
    	 * by poll logic and correct handling of state changes
    	 * made by other threads is impossible in any case.
    	 */
    
    	mask = 0;
    
    	/*
    	 * EPOLLHUP is certainly not done right. But poll() doesn't
    	 * have a notion of HUP in just one direction, and for a
    	 * socket the read side is more interesting.
    	 *
    	 * Some poll() documentation says that EPOLLHUP is incompatible
    	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
    	 * all. But careful, it tends to be safer to return too many
    	 * bits than too few, and you can easily break real applications
    	 * if you don't tell them that something has hung up!
    	 *
    	 * Check-me.
    	 *
    	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
    	 * our fs/select.c). It means that after we received EOF,
    	 * poll always returns immediately, making impossible poll() on write()
    	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
    	 * if and only if shutdown has been made in both directions.
    	 * Actually, it is interesting to look how Solaris and DUX
    	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
    	 * then we could set it on SND_SHUTDOWN. BTW examples given
    	 * in Stevens' books assume exactly this behaviour, it explains
    	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
    	 *
    	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
    	 * blocking on fresh not-connected or disconnected socket. --ANK
    	 */
    	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
    		mask |= EPOLLHUP;
    	if (sk->sk_shutdown & RCV_SHUTDOWN)
    		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
    
    	/* Connected or passive Fast Open socket? */
    	if (state != TCP_SYN_SENT &&
    	    (state != TCP_SYN_RECV || tp->fastopen_rsk)) {
    		int target = sock_rcvlowat(sk, 0, INT_MAX);
    
    		if (tp->urg_seq == tp->copied_seq &&
    		    !sock_flag(sk, SOCK_URGINLINE) &&
    		    tp->urg_data)
    			target++;
    
    		if (tcp_stream_is_readable(tp, target, sk))
    			mask |= EPOLLIN | EPOLLRDNORM;
    
    		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
    			if (sk_stream_is_writeable(sk)) {
    				mask |= EPOLLOUT | EPOLLWRNORM;
    			} else {  /* send SIGIO later */
    				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
    				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
    
    				/* Race breaker. If space is freed after
    				 * wspace test but before the flags are set,
    				 * IO signal will be lost. Memory barrier
    				 * pairs with the input side.
    				 */
    				smp_mb__after_atomic();
    				if (sk_stream_is_writeable(sk))
    					mask |= EPOLLOUT | EPOLLWRNORM;
    			}
    		} else
    			mask |= EPOLLOUT | EPOLLWRNORM;
    
    		if (tp->urg_data & TCP_URG_VALID)
    			mask |= EPOLLPRI;
    	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
    		/* Active TCP fastopen socket with defer_connect
    		 * Return EPOLLOUT so application can call write()
    		 * in order for kernel to generate SYN+data
    		 */
    		mask |= EPOLLOUT | EPOLLWRNORM;
    	}
    	/* This barrier is coupled with smp_wmb() in tcp_reset() */
    	smp_rmb();
    	if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
    		mask |= EPOLLERR;
    
    	return mask;
    }
    EXPORT_SYMBOL(tcp_poll);
    
    int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	int answ;
    	bool slow;
    
    	switch (cmd) {
    	case SIOCINQ:
    		if (sk->sk_state == TCP_LISTEN)
    			return -EINVAL;
    
    		slow = lock_sock_fast(sk);
    		answ = tcp_inq(sk);
    		unlock_sock_fast(sk, slow);
    		break;
    	case SIOCATMARK:
    		answ = tp->urg_data && tp->urg_seq == tp->copied_seq;
    		break;
    	case SIOCOUTQ:
    		if (sk->sk_state == TCP_LISTEN)
    			return -EINVAL;
    
    		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
    			answ = 0;
    		else
    			answ = tp->write_seq - tp->snd_una;
    		break;
    	case SIOCOUTQNSD:
    		if (sk->sk_state == TCP_LISTEN)
    			return -EINVAL;
    
    		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
    			answ = 0;
    		else
    			answ = tp->write_seq - tp->snd_nxt;
    		break;
    	default:
    		return -ENOIOCTLCMD;
    	}
    
    	return put_user(answ, (int __user *)arg);
    }
    EXPORT_SYMBOL(tcp_ioctl);
    
    static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
    {
    	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
    	tp->pushed_seq = tp->write_seq;
    }
    
    static inline bool forced_push(const struct tcp_sock *tp)
    {
    	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
    }
    
    static void skb_entail(struct sock *sk, struct sk_buff *skb)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
    
    	skb->csum    = 0;
    	tcb->seq     = tcb->end_seq = tp->write_seq;
    	tcb->tcp_flags = TCPHDR_ACK;
    	tcb->sacked  = 0;
    	__skb_header_release(skb);
    	tcp_add_write_queue_tail(sk, skb);
    	sk->sk_wmem_queued += skb->truesize;
    	sk_mem_charge(sk, skb->truesize);
    	if (tp->nonagle & TCP_NAGLE_PUSH)
    		tp->nonagle &= ~TCP_NAGLE_PUSH;
    
    	tcp_slow_start_after_idle_check(sk);
    }
    
    static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
    {
    	if (flags & MSG_OOB)
    		tp->snd_up = tp->write_seq;
    }
    
    /* If a not yet filled skb is pushed, do not send it if
     * we have data packets in Qdisc or NIC queues :
     * Because TX completion will happen shortly, it gives a chance
     * to coalesce future sendmsg() payload into this skb, without
     * need for a timer, and with no latency trade off.
     * As packets containing data payload have a bigger truesize
     * than pure acks (dataless) packets, the last checks prevent
     * autocorking if we only have an ACK in Qdisc/NIC queues,
     * or if TX completion was delayed after we processed ACK packet.
     */
    static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
    				int size_goal)
    {
    	return skb->len < size_goal &&
    	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
    	       !tcp_rtx_queue_empty(sk) &&
    	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
    }
    
    static void tcp_push(struct sock *sk, int flags, int mss_now,
    		     int nonagle, int size_goal)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *skb;
    
    	skb = tcp_write_queue_tail(sk);
    	if (!skb)
    		return;
    	if (!(flags & MSG_MORE) || forced_push(tp))
    		tcp_mark_push(tp, skb);
    
    	tcp_mark_urg(tp, flags);
    
    	if (tcp_should_autocork(sk, skb, size_goal)) {
    
    		/* avoid atomic op if TSQ_THROTTLED bit is already set */
    		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
    			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
    			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
    		}
    		/* It is possible TX completion already happened
    		 * before we set TSQ_THROTTLED.
    		 */
    		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
    			return;
    	}
    
    	if (flags & MSG_MORE)
    		nonagle = TCP_NAGLE_CORK;
    
    	__tcp_push_pending_frames(sk, mss_now, nonagle);
    }
    
    static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
    				unsigned int offset, size_t len)
    {
    	struct tcp_splice_state *tss = rd_desc->arg.data;
    	int ret;
    
    	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
    			      min(rd_desc->count, len), tss->flags);
    	if (ret > 0)
    		rd_desc->count -= ret;
    	return ret;
    }
    
    static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
    {
    	/* Store TCP splice context information in read_descriptor_t. */
    	read_descriptor_t rd_desc = {
    		.arg.data = tss,
    		.count	  = tss->len,
    	};
    
    	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
    }
    
    /**
     *  tcp_splice_read - splice data from TCP socket to a pipe
     * @sock:	socket to splice from
     * @ppos:	position (not valid)
     * @pipe:	pipe to splice to
     * @len:	number of bytes to splice
     * @flags:	splice modifier flags
     *
     * Description:
     *    Will read pages from given socket and fill them into a pipe.
     *
     **/
    ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
    			struct pipe_inode_info *pipe, size_t len,
    			unsigned int flags)
    {
    	struct sock *sk = sock->sk;
    	struct tcp_splice_state tss = {
    		.pipe = pipe,
    		.len = len,
    		.flags = flags,
    	};
    	long timeo;
    	ssize_t spliced;
    	int ret;
    
    	sock_rps_record_flow(sk);
    	/*
    	 * We can't seek on a socket input
    	 */
    	if (unlikely(*ppos))
    		return -ESPIPE;
    
    	ret = spliced = 0;
    
    	lock_sock(sk);
    
    	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
    	while (tss.len) {
    		ret = __tcp_splice_read(sk, &tss);
    		if (ret < 0)
    			break;
    		else if (!ret) {
    			if (spliced)
    				break;
    			if (sock_flag(sk, SOCK_DONE))
    				break;
    			if (sk->sk_err) {
    				ret = sock_error(sk);
    				break;
    			}
    			if (sk->sk_shutdown & RCV_SHUTDOWN)
    				break;
    			if (sk->sk_state == TCP_CLOSE) {
    				/*
    				 * This occurs when user tries to read
    				 * from never connected socket.
    				 */
    				if (!sock_flag(sk, SOCK_DONE))
    					ret = -ENOTCONN;
    				break;
    			}
    			if (!timeo) {
    				ret = -EAGAIN;
    				break;
    			}
    			/* if __tcp_splice_read() got nothing while we have
    			 * an skb in receive queue, we do not want to loop.
    			 * This might happen with URG data.
    			 */
    			if (!skb_queue_empty(&sk->sk_receive_queue))
    				break;
    			sk_wait_data(sk, &timeo, NULL);
    			if (signal_pending(current)) {
    				ret = sock_intr_errno(timeo);
    				break;
    			}
    			continue;
    		}
    		tss.len -= ret;
    		spliced += ret;
    
    		if (!timeo)
    			break;
    		release_sock(sk);
    		lock_sock(sk);
    
    		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
    		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
    		    signal_pending(current))
    			break;
    	}
    
    	release_sock(sk);
    
    	if (spliced)
    		return spliced;
    
    	return ret;
    }
    EXPORT_SYMBOL(tcp_splice_read);
    
    struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
    				    bool force_schedule)
    {
    	struct sk_buff *skb;
    
    	/* The TCP header must be at least 32-bit aligned.  */
    	size = ALIGN(size, 4);
    
    	if (unlikely(tcp_under_memory_pressure(sk)))
    		sk_mem_reclaim_partial(sk);
    
    	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
    	if (likely(skb)) {
    		bool mem_scheduled;
    
    		if (force_schedule) {
    			mem_scheduled = true;
    			sk_forced_mem_schedule(sk, skb->truesize);
    		} else {
    			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
    		}
    		if (likely(mem_scheduled)) {
    			skb_reserve(skb, sk->sk_prot->max_header);
    			/*
    			 * Make sure that we have exactly size bytes
    			 * available to the caller, no more, no less.
    			 */
    			skb->reserved_tailroom = skb->end - skb->tail - size;
    			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
    			return skb;
    		}
    		__kfree_skb(skb);
    	} else {
    		sk->sk_prot->enter_memory_pressure(sk);
    		sk_stream_moderate_sndbuf(sk);
    	}
    	return NULL;
    }
    
    static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
    				       int large_allowed)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	u32 new_size_goal, size_goal;
    
    	if (!large_allowed)
    		return mss_now;
    
    	/* Note : tcp_tso_autosize() will eventually split this later */
    	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
    	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
    
    	/* We try hard to avoid divides here */
    	size_goal = tp->gso_segs * mss_now;
    	if (unlikely(new_size_goal < size_goal ||
    		     new_size_goal >= size_goal + mss_now)) {
    		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
    				     sk->sk_gso_max_segs);
    		size_goal = tp->gso_segs * mss_now;
    	}
    
    	return max(size_goal, mss_now);
    }
    
    static int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
    {
    	int mss_now;
    
    	mss_now = tcp_current_mss(sk);
    	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
    
    	return mss_now;
    }
    
    ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
    			 size_t size, int flags)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	int mss_now, size_goal;
    	int err;
    	ssize_t copied;
    	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
    
    	/* Wait for a connection to finish. One exception is TCP Fast Open
    	 * (passive side) where data is allowed to be sent before a connection
    	 * is fully established.
    	 */
    	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
    	    !tcp_passive_fastopen(sk)) {
    		err = sk_stream_wait_connect(sk, &timeo);
    		if (err != 0)
    			goto out_err;
    	}
    
    	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
    
    	mss_now = tcp_send_mss(sk, &size_goal, flags);
    	copied = 0;
    
    	err = -EPIPE;
    	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
    		goto out_err;
    
    	while (size > 0) {
    		struct sk_buff *skb = tcp_write_queue_tail(sk);
    		int copy, i;
    		bool can_coalesce;
    
    		if (!skb || (copy = size_goal - skb->len) <= 0 ||
    		    !tcp_skb_can_collapse_to(skb)) {
    new_segment:
    			if (!sk_stream_memory_free(sk))
    				goto wait_for_sndbuf;
    
    			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
    					tcp_rtx_and_write_queues_empty(sk));
    			if (!skb)
    				goto wait_for_memory;
    
    			skb_entail(sk, skb);
    			copy = size_goal;
    		}
    
    		if (copy > size)
    			copy = size;
    
    		i = skb_shinfo(skb)->nr_frags;
    		can_coalesce = skb_can_coalesce(skb, i, page, offset);
    		if (!can_coalesce && i >= sysctl_max_skb_frags) {
    			tcp_mark_push(tp, skb);
    			goto new_segment;
    		}
    		if (!sk_wmem_schedule(sk, copy))
    			goto wait_for_memory;
    
    		if (can_coalesce) {
    			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
    		} else {
    			get_page(page);
    			skb_fill_page_desc(skb, i, page, offset, copy);
    		}
    
    		if (!(flags & MSG_NO_SHARED_FRAGS))
    			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
    
    		skb->len += copy;
    		skb->data_len += copy;
    		skb->truesize += copy;
    		sk->sk_wmem_queued += copy;
    		sk_mem_charge(sk, copy);
    		skb->ip_summed = CHECKSUM_PARTIAL;
    		tp->write_seq += copy;
    		TCP_SKB_CB(skb)->end_seq += copy;
    		tcp_skb_pcount_set(skb, 0);
    
    		if (!copied)
    			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
    
    		copied += copy;
    		offset += copy;
    		size -= copy;
    		if (!size)
    			goto out;
    
    		if (skb->len < size_goal || (flags & MSG_OOB))
    			continue;
    
    		if (forced_push(tp)) {
    			tcp_mark_push(tp, skb);
    			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
    		} else if (skb == tcp_send_head(sk))
    			tcp_push_one(sk, mss_now);
    		continue;
    
    wait_for_sndbuf:
    		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
    wait_for_memory:
    		tcp_push(sk, flags & ~MSG_MORE, mss_now,
    			 TCP_NAGLE_PUSH, size_goal);
    
    		err = sk_stream_wait_memory(sk, &timeo);
    		if (err != 0)
    			goto do_error;
    
    		mss_now = tcp_send_mss(sk, &size_goal, flags);
    	}
    
    out:
    	if (copied) {
    		tcp_tx_timestamp(sk, sk->sk_tsflags);
    		if (!(flags & MSG_SENDPAGE_NOTLAST))
    			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
    	}
    	return copied;
    
    do_error:
    	if (copied)
    		goto out;
    out_err:
    	/* make sure we wake any epoll edge trigger waiter */
    	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
    		     err == -EAGAIN)) {
    		sk->sk_write_space(sk);
    		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
    	}
    	return sk_stream_error(sk, flags, err);
    }
    EXPORT_SYMBOL_GPL(do_tcp_sendpages);
    
    int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
    			size_t size, int flags)
    {
    	if (!(sk->sk_route_caps & NETIF_F_SG))
    		return sock_no_sendpage_locked(sk, page, offset, size, flags);
    
    	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
    
    	return do_tcp_sendpages(sk, page, offset, size, flags);
    }
    EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
    
    int tcp_sendpage(struct sock *sk, struct page *page, int offset,
    		 size_t size, int flags)
    {
    	int ret;
    
    	lock_sock(sk);
    	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
    	release_sock(sk);
    
    	return ret;
    }
    EXPORT_SYMBOL(tcp_sendpage);
    
    /* Do not bother using a page frag for very small frames.
     * But use this heuristic only for the first skb in write queue.
     *
     * Having no payload in skb->head allows better SACK shifting
     * in tcp_shift_skb_data(), reducing sack/rack overhead, because
     * write queue has less skbs.
     * Each skb can hold up to MAX_SKB_FRAGS * 32Kbytes, or ~0.5 MB.
     * This also speeds up tso_fragment(), since it wont fallback
     * to tcp_fragment().
     */
    static int linear_payload_sz(bool first_skb)
    {
    	if (first_skb)
    		return SKB_WITH_OVERHEAD(2048 - MAX_TCP_HEADER);
    	return 0;
    }
    
    static int select_size(bool first_skb, bool zc)
    {
    	if (zc)
    		return 0;
    	return linear_payload_sz(first_skb);
    }
    
    void tcp_free_fastopen_req(struct tcp_sock *tp)
    {
    	if (tp->fastopen_req) {
    		kfree(tp->fastopen_req);
    		tp->fastopen_req = NULL;
    	}
    }
    
    static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
    				int *copied, size_t size)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct inet_sock *inet = inet_sk(sk);
    	struct sockaddr *uaddr = msg->msg_name;
    	int err, flags;
    
    	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
    	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
    	     uaddr->sa_family == AF_UNSPEC))
    		return -EOPNOTSUPP;
    	if (tp->fastopen_req)
    		return -EALREADY; /* Another Fast Open is in progress */
    
    	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
    				   sk->sk_allocation);
    	if (unlikely(!tp->fastopen_req))
    		return -ENOBUFS;
    	tp->fastopen_req->data = msg;
    	tp->fastopen_req->size = size;
    
    	if (inet->defer_connect) {
    		err = tcp_connect(sk);
    		/* Same failure procedure as in tcp_v4/6_connect */
    		if (err) {
    			tcp_set_state(sk, TCP_CLOSE);
    			inet->inet_dport = 0;
    			sk->sk_route_caps = 0;
    		}
    	}
    	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
    	err = __inet_stream_connect(sk->sk_socket, uaddr,
    				    msg->msg_namelen, flags, 1);
    	/* fastopen_req could already be freed in __inet_stream_connect
    	 * if the connection times out or gets rst
    	 */
    	if (tp->fastopen_req) {
    		*copied = tp->fastopen_req->copied;
    		tcp_free_fastopen_req(tp);
    		inet->defer_connect = 0;
    	}
    	return err;
    }
    
    int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct ubuf_info *uarg = NULL;
    	struct sk_buff *skb;
    	struct sockcm_cookie sockc;
    	int flags, err, copied = 0;
    	int mss_now = 0, size_goal, copied_syn = 0;
    	bool process_backlog = false;
    	bool zc = false;
    	long timeo;
    
    	flags = msg->msg_flags;
    
    	if (flags & MSG_ZEROCOPY && size) {
    		if (sk->sk_state != TCP_ESTABLISHED) {
    			err = -EINVAL;
    			goto out_err;
    		}
    
    		skb = tcp_write_queue_tail(sk);
    		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
    		if (!uarg) {
    			err = -ENOBUFS;
    			goto out_err;
    		}
    
    		zc = sk->sk_route_caps & NETIF_F_SG;
    		if (!zc)
    			uarg->zerocopy = 0;
    	}
    
    	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
    	    !tp->repair) {
    		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size);
    		if (err == -EINPROGRESS && copied_syn > 0)
    			goto out;
    		else if (err)
    			goto out_err;
    	}
    
    	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
    
    	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
    
    	/* Wait for a connection to finish. One exception is TCP Fast Open
    	 * (passive side) where data is allowed to be sent before a connection
    	 * is fully established.
    	 */
    	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
    	    !tcp_passive_fastopen(sk)) {
    		err = sk_stream_wait_connect(sk, &timeo);
    		if (err != 0)
    			goto do_error;
    	}
    
    	if (unlikely(tp->repair)) {
    		if (tp->repair_queue == TCP_RECV_QUEUE) {
    			copied = tcp_send_rcvq(sk, msg, size);
    			goto out_nopush;
    		}
    
    		err = -EINVAL;
    		if (tp->repair_queue == TCP_NO_QUEUE)
    			goto out_err;
    
    		/* 'common' sending to sendq */
    	}
    
    	sockc.tsflags = sk->sk_tsflags;
    	if (msg->msg_controllen) {
    		err = sock_cmsg_send(sk, msg, &sockc);
    		if (unlikely(err)) {
    			err = -EINVAL;
    			goto out_err;
    		}
    	}
    
    	/* This should be in poll */
    	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
    
    	/* Ok commence sending. */
    	copied = 0;
    
    restart:
    	mss_now = tcp_send_mss(sk, &size_goal, flags);
    
    	err = -EPIPE;
    	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
    		goto do_error;
    
    	while (msg_data_left(msg)) {
    		int copy = 0;
    
    		skb = tcp_write_queue_tail(sk);
    		if (skb)
    			copy = size_goal - skb->len;
    
    		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
    			bool first_skb;
    			int linear;
    
    new_segment:
    			/* Allocate new segment. If the interface is SG,
    			 * allocate skb fitting to single page.
    			 */
    			if (!sk_stream_memory_free(sk))
    				goto wait_for_sndbuf;
    
    			if (process_backlog && sk_flush_backlog(sk)) {
    				process_backlog = false;
    				goto restart;
    			}
    			first_skb = tcp_rtx_and_write_queues_empty(sk);
    			linear = select_size(first_skb, zc);
    			skb = sk_stream_alloc_skb(sk, linear, sk->sk_allocation,
    						  first_skb);
    			if (!skb)
    				goto wait_for_memory;
    
    			process_backlog = true;
    			skb->ip_summed = CHECKSUM_PARTIAL;
    
    			skb_entail(sk, skb);
    			copy = size_goal;
    
    			/* All packets are restored as if they have
    			 * already been sent. skb_mstamp isn't set to
    			 * avoid wrong rtt estimation.
    			 */
    			if (tp->repair)
    				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
    		}
    
    		/* Try to append data to the end of skb. */
    		if (copy > msg_data_left(msg))
    			copy = msg_data_left(msg);
    
    		/* Where to copy to? */
    		if (skb_availroom(skb) > 0 && !zc) {
    			/* We have some space in skb head. Superb! */
    			copy = min_t(int, copy, skb_availroom(skb));
    			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
    			if (err)
    				goto do_fault;
    		} else if (!zc) {
    			bool merge = true;
    			int i = skb_shinfo(skb)->nr_frags;
    			struct page_frag *pfrag = sk_page_frag(sk);
    
    			if (!sk_page_frag_refill(sk, pfrag))
    				goto wait_for_memory;
    
    			if (!skb_can_coalesce(skb, i, pfrag->page,
    					      pfrag->offset)) {
    				if (i >= sysctl_max_skb_frags) {
    					tcp_mark_push(tp, skb);
    					goto new_segment;
    				}
    				merge = false;
    			}
    
    			copy = min_t(int, copy, pfrag->size - pfrag->offset);
    
    			if (!sk_wmem_schedule(sk, copy))
    				goto wait_for_memory;
    
    			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
    						       pfrag->page,
    						       pfrag->offset,
    						       copy);
    			if (err)
    				goto do_error;
    
    			/* Update the skb. */
    			if (merge) {
    				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
    			} else {
    				skb_fill_page_desc(skb, i, pfrag->page,
    						   pfrag->offset, copy);
    				page_ref_inc(pfrag->page);
    			}
    			pfrag->offset += copy;
    		} else {
    			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
    			if (err == -EMSGSIZE || err == -EEXIST) {
    				tcp_mark_push(tp, skb);
    				goto new_segment;
    			}
    			if (err < 0)
    				goto do_error;
    			copy = err;
    		}
    
    		if (!copied)
    			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
    
    		tp->write_seq += copy;
    		TCP_SKB_CB(skb)->end_seq += copy;
    		tcp_skb_pcount_set(skb, 0);
    
    		copied += copy;
    		if (!msg_data_left(msg)) {
    			if (unlikely(flags & MSG_EOR))
    				TCP_SKB_CB(skb)->eor = 1;
    			goto out;
    		}
    
    		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
    			continue;
    
    		if (forced_push(tp)) {
    			tcp_mark_push(tp, skb);
    			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
    		} else if (skb == tcp_send_head(sk))
    			tcp_push_one(sk, mss_now);
    		continue;
    
    wait_for_sndbuf:
    		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
    wait_for_memory:
    		if (copied)
    			tcp_push(sk, flags & ~MSG_MORE, mss_now,
    				 TCP_NAGLE_PUSH, size_goal);
    
    		err = sk_stream_wait_memory(sk, &timeo);
    		if (err != 0)
    			goto do_error;
    
    		mss_now = tcp_send_mss(sk, &size_goal, flags);
    	}
    
    out:
    	if (copied) {
    		tcp_tx_timestamp(sk, sockc.tsflags);
    		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
    	}
    out_nopush:
    	sock_zerocopy_put(uarg);
    	return copied + copied_syn;
    
    do_fault:
    	if (!skb->len) {
    		tcp_unlink_write_queue(skb, sk);
    		/* It is the one place in all of TCP, except connection
    		 * reset, where we can be unlinking the send_head.
    		 */
    		tcp_check_send_head(sk, skb);
    		sk_wmem_free_skb(sk, skb);
    	}
    
    do_error:
    	if (copied + copied_syn)
    		goto out;
    out_err:
    	sock_zerocopy_put_abort(uarg);
    	err = sk_stream_error(sk, flags, err);
    	/* make sure we wake any epoll edge trigger waiter */
    	if (unlikely(skb_queue_len(&sk->sk_write_queue) == 0 &&
    		     err == -EAGAIN)) {
    		sk->sk_write_space(sk);
    		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
    	}
    	return err;
    }
    EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
    
    int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
    {
    	int ret;
    
    	lock_sock(sk);
    	ret = tcp_sendmsg_locked(sk, msg, size);
    	release_sock(sk);
    
    	return ret;
    }
    EXPORT_SYMBOL(tcp_sendmsg);
    
    /*
     *	Handle reading urgent data. BSD has very simple semantics for
     *	this, no blocking and very strange errors 8)
     */
    
    static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    
    	/* No URG data to read. */
    	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
    	    tp->urg_data == TCP_URG_READ)
    		return -EINVAL;	/* Yes this is right ! */
    
    	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
    		return -ENOTCONN;
    
    	if (tp->urg_data & TCP_URG_VALID) {
    		int err = 0;
    		char c = tp->urg_data;
    
    		if (!(flags & MSG_PEEK))
    			tp->urg_data = TCP_URG_READ;
    
    		/* Read urgent data. */
    		msg->msg_flags |= MSG_OOB;
    
    		if (len > 0) {
    			if (!(flags & MSG_TRUNC))
    				err = memcpy_to_msg(msg, &c, 1);
    			len = 1;
    		} else
    			msg->msg_flags |= MSG_TRUNC;
    
    		return err ? -EFAULT : len;
    	}
    
    	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
    		return 0;
    
    	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
    	 * the available implementations agree in this case:
    	 * this call should never block, independent of the
    	 * blocking state of the socket.
    	 * Mike <pall@rz.uni-karlsruhe.de>
    	 */
    	return -EAGAIN;
    }
    
    static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
    {
    	struct sk_buff *skb;
    	int copied = 0, err = 0;
    
    	/* XXX -- need to support SO_PEEK_OFF */
    
    	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
    		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
    		if (err)
    			return err;
    		copied += skb->len;
    	}
    
    	skb_queue_walk(&sk->sk_write_queue, skb) {
    		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
    		if (err)
    			break;
    
    		copied += skb->len;
    	}
    
    	return err ?: copied;
    }
    
    /* Clean up the receive buffer for full frames taken by the user,
     * then send an ACK if necessary.  COPIED is the number of bytes
     * tcp_recvmsg has given to the user so far, it speeds up the
     * calculation of whether or not we must ACK for the sake of
     * a window update.
     */
    static void tcp_cleanup_rbuf(struct sock *sk, int copied)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	bool time_to_ack = false;
    
    	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
    
    	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
    	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
    	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
    
    	if (inet_csk_ack_scheduled(sk)) {
    		const struct inet_connection_sock *icsk = inet_csk(sk);
    		   /* Delayed ACKs frequently hit locked sockets during bulk
    		    * receive. */
    		if (icsk->icsk_ack.blocked ||
    		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
    		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
    		    /*
    		     * If this read emptied read buffer, we send ACK, if
    		     * connection is not bidirectional, user drained
    		     * receive buffer and there was a small segment
    		     * in queue.
    		     */
    		    (copied > 0 &&
    		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
    		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
    		       !icsk->icsk_ack.pingpong)) &&
    		      !atomic_read(&sk->sk_rmem_alloc)))
    			time_to_ack = true;
    	}
    
    	/* We send an ACK if we can now advertise a non-zero window
    	 * which has been raised "significantly".
    	 *
    	 * Even if window raised up to infinity, do not send window open ACK
    	 * in states, where we will not receive more. It is useless.
    	 */
    	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
    		__u32 rcv_window_now = tcp_receive_window(tp);
    
    		/* Optimize, __tcp_select_window() is not cheap. */
    		if (2*rcv_window_now <= tp->window_clamp) {
    			__u32 new_window = __tcp_select_window(sk);
    
    			/* Send ACK now, if this read freed lots of space
    			 * in our buffer. Certainly, new_window is new window.
    			 * We can advertise it now, if it is not less than current one.
    			 * "Lots" means "at least twice" here.
    			 */
    			if (new_window && new_window >= 2 * rcv_window_now)
    				time_to_ack = true;
    		}
    	}
    	if (time_to_ack)
    		tcp_send_ack(sk);
    }
    
    static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
    {
    	struct sk_buff *skb;
    	u32 offset;
    
    	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
    		offset = seq - TCP_SKB_CB(skb)->seq;
    		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
    			pr_err_once("%s: found a SYN, please report !\n", __func__);
    			offset--;
    		}
    		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
    			*off = offset;
    			return skb;
    		}
    		/* This looks weird, but this can happen if TCP collapsing
    		 * splitted a fat GRO packet, while we released socket lock
    		 * in skb_splice_bits()
    		 */
    		sk_eat_skb(sk, skb);
    	}
    	return NULL;
    }
    
    /*
     * This routine provides an alternative to tcp_recvmsg() for routines
     * that would like to handle copying from skbuffs directly in 'sendfile'
     * fashion.
     * Note:
     *	- It is assumed that the socket was locked by the caller.
     *	- The routine does not block.
     *	- At present, there is no support for reading OOB data
     *	  or for 'peeking' the socket using this routine
     *	  (although both would be easy to implement).
     */
    int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
    		  sk_read_actor_t recv_actor)
    {
    	struct sk_buff *skb;
    	struct tcp_sock *tp = tcp_sk(sk);
    	u32 seq = tp->copied_seq;
    	u32 offset;
    	int copied = 0;
    
    	if (sk->sk_state == TCP_LISTEN)
    		return -ENOTCONN;
    	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
    		if (offset < skb->len) {
    			int used;
    			size_t len;
    
    			len = skb->len - offset;
    			/* Stop reading if we hit a patch of urgent data */
    			if (tp->urg_data) {
    				u32 urg_offset = tp->urg_seq - seq;
    				if (urg_offset < len)
    					len = urg_offset;
    				if (!len)
    					break;
    			}
    			used = recv_actor(desc, skb, offset, len);
    			if (used <= 0) {
    				if (!copied)
    					copied = used;
    				break;
    			} else if (used <= len) {
    				seq += used;
    				copied += used;
    				offset += used;
    			}
    			/* If recv_actor drops the lock (e.g. TCP splice
    			 * receive) the skb pointer might be invalid when
    			 * getting here: tcp_collapse might have deleted it
    			 * while aggregating skbs from the socket queue.
    			 */
    			skb = tcp_recv_skb(sk, seq - 1, &offset);
    			if (!skb)
    				break;
    			/* TCP coalescing might have appended data to the skb.
    			 * Try to splice more frags
    			 */
    			if (offset + 1 != skb->len)
    				continue;
    		}
    		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
    			sk_eat_skb(sk, skb);
    			++seq;
    			break;
    		}
    		sk_eat_skb(sk, skb);
    		if (!desc->count)
    			break;
    		tp->copied_seq = seq;
    	}
    	tp->copied_seq = seq;
    
    	tcp_rcv_space_adjust(sk);
    
    	/* Clean up data we have read: This will do ACK frames. */
    	if (copied > 0) {
    		tcp_recv_skb(sk, seq, &offset);
    		tcp_cleanup_rbuf(sk, copied);
    	}
    	return copied;
    }
    EXPORT_SYMBOL(tcp_read_sock);
    
    int tcp_peek_len(struct socket *sock)
    {
    	return tcp_inq(sock->sk);
    }
    EXPORT_SYMBOL(tcp_peek_len);
    
    /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
    int tcp_set_rcvlowat(struct sock *sk, int val)
    {
    	int cap;
    
    	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
    		cap = sk->sk_rcvbuf >> 1;
    	else
    		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
    	val = min(val, cap);
    	sk->sk_rcvlowat = val ? : 1;
    
    	/* Check if we need to signal EPOLLIN right now */
    	tcp_data_ready(sk);
    
    	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
    		return 0;
    
    	val <<= 1;
    	if (val > sk->sk_rcvbuf) {
    		sk->sk_rcvbuf = val;
    		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
    	}
    	return 0;
    }
    EXPORT_SYMBOL(tcp_set_rcvlowat);
    
    #ifdef CONFIG_MMU
    static const struct vm_operations_struct tcp_vm_ops = {
    };
    
    int tcp_mmap(struct file *file, struct socket *sock,
    	     struct vm_area_struct *vma)
    {
    	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
    		return -EPERM;
    	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
    
    	/* Instruct vm_insert_page() to not down_read(mmap_sem) */
    	vma->vm_flags |= VM_MIXEDMAP;
    
    	vma->vm_ops = &tcp_vm_ops;
    	return 0;
    }
    EXPORT_SYMBOL(tcp_mmap);
    
    static int tcp_zerocopy_receive(struct sock *sk,
    				struct tcp_zerocopy_receive *zc)
    {
    	unsigned long address = (unsigned long)zc->address;
    	const skb_frag_t *frags = NULL;
    	u32 length = 0, seq, offset;
    	struct vm_area_struct *vma;
    	struct sk_buff *skb = NULL;
    	struct tcp_sock *tp;
    	int ret;
    
    	if (address & (PAGE_SIZE - 1) || address != zc->address)
    		return -EINVAL;
    
    	if (sk->sk_state == TCP_LISTEN)
    		return -ENOTCONN;
    
    	sock_rps_record_flow(sk);
    
    	down_read(&current->mm->mmap_sem);
    
    	ret = -EINVAL;
    	vma = find_vma(current->mm, address);
    	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops)
    		goto out;
    	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
    
    	tp = tcp_sk(sk);
    	seq = tp->copied_seq;
    	zc->length = min_t(u32, zc->length, tcp_inq(sk));
    	zc->length &= ~(PAGE_SIZE - 1);
    
    	zap_page_range(vma, address, zc->length);
    
    	zc->recv_skip_hint = 0;
    	ret = 0;
    	while (length + PAGE_SIZE <= zc->length) {
    		if (zc->recv_skip_hint < PAGE_SIZE) {
    			if (skb) {
    				skb = skb->next;
    				offset = seq - TCP_SKB_CB(skb)->seq;
    			} else {
    				skb = tcp_recv_skb(sk, seq, &offset);
    			}
    
    			zc->recv_skip_hint = skb->len - offset;
    			offset -= skb_headlen(skb);
    			if ((int)offset < 0 || skb_has_frag_list(skb))
    				break;
    			frags = skb_shinfo(skb)->frags;
    			while (offset) {
    				if (frags->size > offset)
    					goto out;
    				offset -= frags->size;
    				frags++;
    			}
    		}
    		if (frags->size != PAGE_SIZE || frags->page_offset)
    			break;
    		ret = vm_insert_page(vma, address + length,
    				     skb_frag_page(frags));
    		if (ret)
    			break;
    		length += PAGE_SIZE;
    		seq += PAGE_SIZE;
    		zc->recv_skip_hint -= PAGE_SIZE;
    		frags++;
    	}
    out:
    	up_read(&current->mm->mmap_sem);
    	if (length) {
    		tp->copied_seq = seq;
    		tcp_rcv_space_adjust(sk);
    
    		/* Clean up data we have read: This will do ACK frames. */
    		tcp_recv_skb(sk, seq, &offset);
    		tcp_cleanup_rbuf(sk, length);
    		ret = 0;
    		if (length == zc->length)
    			zc->recv_skip_hint = 0;
    	} else {
    		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
    			ret = -EIO;
    	}
    	zc->length = length;
    	return ret;
    }
    #endif
    
    static void tcp_update_recv_tstamps(struct sk_buff *skb,
    				    struct scm_timestamping *tss)
    {
    	if (skb->tstamp)
    		tss->ts[0] = ktime_to_timespec(skb->tstamp);
    	else
    		tss->ts[0] = (struct timespec) {0};
    
    	if (skb_hwtstamps(skb)->hwtstamp)
    		tss->ts[2] = ktime_to_timespec(skb_hwtstamps(skb)->hwtstamp);
    	else
    		tss->ts[2] = (struct timespec) {0};
    }
    
    /* Similar to __sock_recv_timestamp, but does not require an skb */
    static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
    			       struct scm_timestamping *tss)
    {
    	struct timeval tv;
    	bool has_timestamping = false;
    
    	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
    		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
    			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
    				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
    					 sizeof(tss->ts[0]), &tss->ts[0]);
    			} else {
    				tv.tv_sec = tss->ts[0].tv_sec;
    				tv.tv_usec = tss->ts[0].tv_nsec / 1000;
    
    				put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
    					 sizeof(tv), &tv);
    			}
    		}
    
    		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
    			has_timestamping = true;
    		else
    			tss->ts[0] = (struct timespec) {0};
    	}
    
    	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
    		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
    			has_timestamping = true;
    		else
    			tss->ts[2] = (struct timespec) {0};
    	}
    
    	if (has_timestamping) {
    		tss->ts[1] = (struct timespec) {0};
    		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING,
    			 sizeof(*tss), tss);
    	}
    }
    
    static int tcp_inq_hint(struct sock *sk)
    {
    	const struct tcp_sock *tp = tcp_sk(sk);
    	u32 copied_seq = READ_ONCE(tp->copied_seq);
    	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
    	int inq;
    
    	inq = rcv_nxt - copied_seq;
    	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
    		lock_sock(sk);
    		inq = tp->rcv_nxt - tp->copied_seq;
    		release_sock(sk);
    	}
    	return inq;
    }
    
    /*
     *	This routine copies from a sock struct into the user buffer.
     *
     *	Technical note: in 2.3 we work on _locked_ socket, so that
     *	tricks with *seq access order and skb->users are not required.
     *	Probably, code can be easily improved even more.
     */
    
    int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
    		int flags, int *addr_len)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	int copied = 0;
    	u32 peek_seq;
    	u32 *seq;
    	unsigned long used;
    	int err, inq;
    	int target;		/* Read at least this many bytes */
    	long timeo;
    	struct sk_buff *skb, *last;
    	u32 urg_hole = 0;
    	struct scm_timestamping tss;
    	bool has_tss = false;
    	bool has_cmsg;
    
    	if (unlikely(flags & MSG_ERRQUEUE))
    		return inet_recv_error(sk, msg, len, addr_len);
    
    	if (sk_can_busy_loop(sk) && skb_queue_empty(&sk->sk_receive_queue) &&
    	    (sk->sk_state == TCP_ESTABLISHED))
    		sk_busy_loop(sk, nonblock);
    
    	lock_sock(sk);
    
    	err = -ENOTCONN;
    	if (sk->sk_state == TCP_LISTEN)
    		goto out;
    
    	has_cmsg = tp->recvmsg_inq;
    	timeo = sock_rcvtimeo(sk, nonblock);
    
    	/* Urgent data needs to be handled specially. */
    	if (flags & MSG_OOB)
    		goto recv_urg;
    
    	if (unlikely(tp->repair)) {
    		err = -EPERM;
    		if (!(flags & MSG_PEEK))
    			goto out;
    
    		if (tp->repair_queue == TCP_SEND_QUEUE)
    			goto recv_sndq;
    
    		err = -EINVAL;
    		if (tp->repair_queue == TCP_NO_QUEUE)
    			goto out;
    
    		/* 'common' recv queue MSG_PEEK-ing */
    	}
    
    	seq = &tp->copied_seq;
    	if (flags & MSG_PEEK) {
    		peek_seq = tp->copied_seq;
    		seq = &peek_seq;
    	}
    
    	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
    
    	do {
    		u32 offset;
    
    		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
    		if (tp->urg_data && tp->urg_seq == *seq) {
    			if (copied)
    				break;
    			if (signal_pending(current)) {
    				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
    				break;
    			}
    		}
    
    		/* Next get a buffer. */
    
    		last = skb_peek_tail(&sk->sk_receive_queue);
    		skb_queue_walk(&sk->sk_receive_queue, skb) {
    			last = skb;
    			/* Now that we have two receive queues this
    			 * shouldn't happen.
    			 */
    			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
    				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
    				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
    				 flags))
    				break;
    
    			offset = *seq - TCP_SKB_CB(skb)->seq;
    			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
    				pr_err_once("%s: found a SYN, please report !\n", __func__);
    				offset--;
    			}
    			if (offset < skb->len)
    				goto found_ok_skb;
    			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
    				goto found_fin_ok;
    			WARN(!(flags & MSG_PEEK),
    			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
    			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
    		}
    
    		/* Well, if we have backlog, try to process it now yet. */
    
    		if (copied >= target && !sk->sk_backlog.tail)
    			break;
    
    		if (copied) {
    			if (sk->sk_err ||
    			    sk->sk_state == TCP_CLOSE ||
    			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
    			    !timeo ||
    			    signal_pending(current))
    				break;
    		} else {
    			if (sock_flag(sk, SOCK_DONE))
    				break;
    
    			if (sk->sk_err) {
    				copied = sock_error(sk);
    				break;
    			}
    
    			if (sk->sk_shutdown & RCV_SHUTDOWN)
    				break;
    
    			if (sk->sk_state == TCP_CLOSE) {
    				if (!sock_flag(sk, SOCK_DONE)) {
    					/* This occurs when user tries to read
    					 * from never connected socket.
    					 */
    					copied = -ENOTCONN;
    					break;
    				}
    				break;
    			}
    
    			if (!timeo) {
    				copied = -EAGAIN;
    				break;
    			}
    
    			if (signal_pending(current)) {
    				copied = sock_intr_errno(timeo);
    				break;
    			}
    		}
    
    		tcp_cleanup_rbuf(sk, copied);
    
    		if (copied >= target) {
    			/* Do not sleep, just process backlog. */
    			release_sock(sk);
    			lock_sock(sk);
    		} else {
    			sk_wait_data(sk, &timeo, last);
    		}
    
    		if ((flags & MSG_PEEK) &&
    		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
    			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
    					    current->comm,
    					    task_pid_nr(current));
    			peek_seq = tp->copied_seq;
    		}
    		continue;
    
    	found_ok_skb:
    		/* Ok so how much can we use? */
    		used = skb->len - offset;
    		if (len < used)
    			used = len;
    
    		/* Do we have urgent data here? */
    		if (tp->urg_data) {
    			u32 urg_offset = tp->urg_seq - *seq;
    			if (urg_offset < used) {
    				if (!urg_offset) {
    					if (!sock_flag(sk, SOCK_URGINLINE)) {
    						++*seq;
    						urg_hole++;
    						offset++;
    						used--;
    						if (!used)
    							goto skip_copy;
    					}
    				} else
    					used = urg_offset;
    			}
    		}
    
    		if (!(flags & MSG_TRUNC)) {
    			err = skb_copy_datagram_msg(skb, offset, msg, used);
    			if (err) {
    				/* Exception. Bailout! */
    				if (!copied)
    					copied = -EFAULT;
    				break;
    			}
    		}
    
    		*seq += used;
    		copied += used;
    		len -= used;
    
    		tcp_rcv_space_adjust(sk);
    
    skip_copy:
    		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
    			tp->urg_data = 0;
    			tcp_fast_path_check(sk);
    		}
    		if (used + offset < skb->len)
    			continue;
    
    		if (TCP_SKB_CB(skb)->has_rxtstamp) {
    			tcp_update_recv_tstamps(skb, &tss);
    			has_tss = true;
    			has_cmsg = true;
    		}
    		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
    			goto found_fin_ok;
    		if (!(flags & MSG_PEEK))
    			sk_eat_skb(sk, skb);
    		continue;
    
    	found_fin_ok:
    		/* Process the FIN. */
    		++*seq;
    		if (!(flags & MSG_PEEK))
    			sk_eat_skb(sk, skb);
    		break;
    	} while (len > 0);
    
    	/* According to UNIX98, msg_name/msg_namelen are ignored
    	 * on connected socket. I was just happy when found this 8) --ANK
    	 */
    
    	/* Clean up data we have read: This will do ACK frames. */
    	tcp_cleanup_rbuf(sk, copied);
    
    	release_sock(sk);
    
    	if (has_cmsg) {
    		if (has_tss)
    			tcp_recv_timestamp(msg, sk, &tss);
    		if (tp->recvmsg_inq) {
    			inq = tcp_inq_hint(sk);
    			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
    		}
    	}
    
    	return copied;
    
    out:
    	release_sock(sk);
    	return err;
    
    recv_urg:
    	err = tcp_recv_urg(sk, msg, len, flags);
    	goto out;
    
    recv_sndq:
    	err = tcp_peek_sndq(sk, msg, len);
    	goto out;
    }
    EXPORT_SYMBOL(tcp_recvmsg);
    
    void tcp_set_state(struct sock *sk, int state)
    {
    	int oldstate = sk->sk_state;
    
    	/* We defined a new enum for TCP states that are exported in BPF
    	 * so as not force the internal TCP states to be frozen. The
    	 * following checks will detect if an internal state value ever
    	 * differs from the BPF value. If this ever happens, then we will
    	 * need to remap the internal value to the BPF value before calling
    	 * tcp_call_bpf_2arg.
    	 */
    	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
    	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
    	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
    	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
    	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
    	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
    	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
    	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
    	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
    	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
    	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
    	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
    	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
    
    	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
    		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
    
    	switch (state) {
    	case TCP_ESTABLISHED:
    		if (oldstate != TCP_ESTABLISHED)
    			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
    		break;
    
    	case TCP_CLOSE:
    		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
    			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
    
    		sk->sk_prot->unhash(sk);
    		if (inet_csk(sk)->icsk_bind_hash &&
    		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
    			inet_put_port(sk);
    		/* fall through */
    	default:
    		if (oldstate == TCP_ESTABLISHED)
    			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
    	}
    
    	/* Change state AFTER socket is unhashed to avoid closed
    	 * socket sitting in hash tables.
    	 */
    	inet_sk_state_store(sk, state);
    
    #ifdef STATE_TRACE
    	SOCK_DEBUG(sk, "TCP sk=%p, State %s -> %s\n", sk, statename[oldstate], statename[state]);
    #endif
    }
    EXPORT_SYMBOL_GPL(tcp_set_state);
    
    /*
     *	State processing on a close. This implements the state shift for
     *	sending our FIN frame. Note that we only send a FIN for some
     *	states. A shutdown() may have already sent the FIN, or we may be
     *	closed.
     */
    
    static const unsigned char new_state[16] = {
      /* current state:        new state:      action:	*/
      [0 /* (Invalid) */]	= TCP_CLOSE,
      [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
      [TCP_SYN_SENT]	= TCP_CLOSE,
      [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
      [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
      [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
      [TCP_TIME_WAIT]	= TCP_CLOSE,
      [TCP_CLOSE]		= TCP_CLOSE,
      [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
      [TCP_LAST_ACK]	= TCP_LAST_ACK,
      [TCP_LISTEN]		= TCP_CLOSE,
      [TCP_CLOSING]		= TCP_CLOSING,
      [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
    };
    
    static int tcp_close_state(struct sock *sk)
    {
    	int next = (int)new_state[sk->sk_state];
    	int ns = next & TCP_STATE_MASK;
    
    	tcp_set_state(sk, ns);
    
    	return next & TCP_ACTION_FIN;
    }
    
    /*
     *	Shutdown the sending side of a connection. Much like close except
     *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
     */
    
    void tcp_shutdown(struct sock *sk, int how)
    {
    	/*	We need to grab some memory, and put together a FIN,
    	 *	and then put it into the queue to be sent.
    	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
    	 */
    	if (!(how & SEND_SHUTDOWN))
    		return;
    
    	/* If we've already sent a FIN, or it's a closed state, skip this. */
    	if ((1 << sk->sk_state) &
    	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
    	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
    		/* Clear out any half completed packets.  FIN if needed. */
    		if (tcp_close_state(sk))
    			tcp_send_fin(sk);
    	}
    }
    EXPORT_SYMBOL(tcp_shutdown);
    
    bool tcp_check_oom(struct sock *sk, int shift)
    {
    	bool too_many_orphans, out_of_socket_memory;
    
    	too_many_orphans = tcp_too_many_orphans(sk, shift);
    	out_of_socket_memory = tcp_out_of_memory(sk);
    
    	if (too_many_orphans)
    		net_info_ratelimited("too many orphaned sockets\n");
    	if (out_of_socket_memory)
    		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
    	return too_many_orphans || out_of_socket_memory;
    }
    
    void tcp_close(struct sock *sk, long timeout)
    {
    	struct sk_buff *skb;
    	int data_was_unread = 0;
    	int state;
    
    	lock_sock(sk);
    	sk->sk_shutdown = SHUTDOWN_MASK;
    
    	if (sk->sk_state == TCP_LISTEN) {
    		tcp_set_state(sk, TCP_CLOSE);
    
    		/* Special case. */
    		inet_csk_listen_stop(sk);
    
    		goto adjudge_to_death;
    	}
    
    	/*  We need to flush the recv. buffs.  We do this only on the
    	 *  descriptor close, not protocol-sourced closes, because the
    	 *  reader process may not have drained the data yet!
    	 */
    	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
    		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
    
    		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
    			len--;
    		data_was_unread += len;
    		__kfree_skb(skb);
    	}
    
    	sk_mem_reclaim(sk);
    
    	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
    	if (sk->sk_state == TCP_CLOSE)
    		goto adjudge_to_death;
    
    	/* As outlined in RFC 2525, section 2.17, we send a RST here because
    	 * data was lost. To witness the awful effects of the old behavior of
    	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
    	 * GET in an FTP client, suspend the process, wait for the client to
    	 * advertise a zero window, then kill -9 the FTP client, wheee...
    	 * Note: timeout is always zero in such a case.
    	 */
    	if (unlikely(tcp_sk(sk)->repair)) {
    		sk->sk_prot->disconnect(sk, 0);
    	} else if (data_was_unread) {
    		/* Unread data was tossed, zap the connection. */
    		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
    		tcp_set_state(sk, TCP_CLOSE);
    		tcp_send_active_reset(sk, sk->sk_allocation);
    	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
    		/* Check zero linger _after_ checking for unread data. */
    		sk->sk_prot->disconnect(sk, 0);
    		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
    	} else if (tcp_close_state(sk)) {
    		/* We FIN if the application ate all the data before
    		 * zapping the connection.
    		 */
    
    		/* RED-PEN. Formally speaking, we have broken TCP state
    		 * machine. State transitions:
    		 *
    		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
    		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
    		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
    		 *
    		 * are legal only when FIN has been sent (i.e. in window),
    		 * rather than queued out of window. Purists blame.
    		 *
    		 * F.e. "RFC state" is ESTABLISHED,
    		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
    		 *
    		 * The visible declinations are that sometimes
    		 * we enter time-wait state, when it is not required really
    		 * (harmless), do not send active resets, when they are
    		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
    		 * they look as CLOSING or LAST_ACK for Linux)
    		 * Probably, I missed some more holelets.
    		 * 						--ANK
    		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
    		 * in a single packet! (May consider it later but will
    		 * probably need API support or TCP_CORK SYN-ACK until
    		 * data is written and socket is closed.)
    		 */
    		tcp_send_fin(sk);
    	}
    
    	sk_stream_wait_close(sk, timeout);
    
    adjudge_to_death:
    	state = sk->sk_state;
    	sock_hold(sk);
    	sock_orphan(sk);
    
    	/* It is the last release_sock in its life. It will remove backlog. */
    	release_sock(sk);
    
    
    	/* Now socket is owned by kernel and we acquire BH lock
    	 *  to finish close. No need to check for user refs.
    	 */
    	local_bh_disable();
    	bh_lock_sock(sk);
    	WARN_ON(sock_owned_by_user(sk));
    
    	percpu_counter_inc(sk->sk_prot->orphan_count);
    
    	/* Have we already been destroyed by a softirq or backlog? */
    	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
    		goto out;
    
    	/*	This is a (useful) BSD violating of the RFC. There is a
    	 *	problem with TCP as specified in that the other end could
    	 *	keep a socket open forever with no application left this end.
    	 *	We use a 1 minute timeout (about the same as BSD) then kill
    	 *	our end. If they send after that then tough - BUT: long enough
    	 *	that we won't make the old 4*rto = almost no time - whoops
    	 *	reset mistake.
    	 *
    	 *	Nope, it was not mistake. It is really desired behaviour
    	 *	f.e. on http servers, when such sockets are useless, but
    	 *	consume significant resources. Let's do it with special
    	 *	linger2	option.					--ANK
    	 */
    
    	if (sk->sk_state == TCP_FIN_WAIT2) {
    		struct tcp_sock *tp = tcp_sk(sk);
    		if (tp->linger2 < 0) {
    			tcp_set_state(sk, TCP_CLOSE);
    			tcp_send_active_reset(sk, GFP_ATOMIC);
    			__NET_INC_STATS(sock_net(sk),
    					LINUX_MIB_TCPABORTONLINGER);
    		} else {
    			const int tmo = tcp_fin_time(sk);
    
    			if (tmo > TCP_TIMEWAIT_LEN) {
    				inet_csk_reset_keepalive_timer(sk,
    						tmo - TCP_TIMEWAIT_LEN);
    			} else {
    				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
    				goto out;
    			}
    		}
    	}
    	if (sk->sk_state != TCP_CLOSE) {
    		sk_mem_reclaim(sk);
    		if (tcp_check_oom(sk, 0)) {
    			tcp_set_state(sk, TCP_CLOSE);
    			tcp_send_active_reset(sk, GFP_ATOMIC);
    			__NET_INC_STATS(sock_net(sk),
    					LINUX_MIB_TCPABORTONMEMORY);
    		} else if (!check_net(sock_net(sk))) {
    			/* Not possible to send reset; just close */
    			tcp_set_state(sk, TCP_CLOSE);
    		}
    	}
    
    	if (sk->sk_state == TCP_CLOSE) {
    		struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
    		/* We could get here with a non-NULL req if the socket is
    		 * aborted (e.g., closed with unread data) before 3WHS
    		 * finishes.
    		 */
    		if (req)
    			reqsk_fastopen_remove(sk, req, false);
    		inet_csk_destroy_sock(sk);
    	}
    	/* Otherwise, socket is reprieved until protocol close. */
    
    out:
    	bh_unlock_sock(sk);
    	local_bh_enable();
    	sock_put(sk);
    }
    EXPORT_SYMBOL(tcp_close);
    
    /* These states need RST on ABORT according to RFC793 */
    
    static inline bool tcp_need_reset(int state)
    {
    	return (1 << state) &
    	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
    		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
    }
    
    static void tcp_rtx_queue_purge(struct sock *sk)
    {
    	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
    
    	while (p) {
    		struct sk_buff *skb = rb_to_skb(p);
    
    		p = rb_next(p);
    		/* Since we are deleting whole queue, no need to
    		 * list_del(&skb->tcp_tsorted_anchor)
    		 */
    		tcp_rtx_queue_unlink(skb, sk);
    		sk_wmem_free_skb(sk, skb);
    	}
    }
    
    void tcp_write_queue_purge(struct sock *sk)
    {
    	struct sk_buff *skb;
    
    	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
    	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
    		tcp_skb_tsorted_anchor_cleanup(skb);
    		sk_wmem_free_skb(sk, skb);
    	}
    	tcp_rtx_queue_purge(sk);
    	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
    	sk_mem_reclaim(sk);
    	tcp_clear_all_retrans_hints(tcp_sk(sk));
    	tcp_sk(sk)->packets_out = 0;
    }
    
    int tcp_disconnect(struct sock *sk, int flags)
    {
    	struct inet_sock *inet = inet_sk(sk);
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	int err = 0;
    	int old_state = sk->sk_state;
    
    	if (old_state != TCP_CLOSE)
    		tcp_set_state(sk, TCP_CLOSE);
    
    	/* ABORT function of RFC793 */
    	if (old_state == TCP_LISTEN) {
    		inet_csk_listen_stop(sk);
    	} else if (unlikely(tp->repair)) {
    		sk->sk_err = ECONNABORTED;
    	} else if (tcp_need_reset(old_state) ||
    		   (tp->snd_nxt != tp->write_seq &&
    		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
    		/* The last check adjusts for discrepancy of Linux wrt. RFC
    		 * states
    		 */
    		tcp_send_active_reset(sk, gfp_any());
    		sk->sk_err = ECONNRESET;
    	} else if (old_state == TCP_SYN_SENT)
    		sk->sk_err = ECONNRESET;
    
    	tcp_clear_xmit_timers(sk);
    	__skb_queue_purge(&sk->sk_receive_queue);
    	tp->copied_seq = tp->rcv_nxt;
    	tp->urg_data = 0;
    	tcp_write_queue_purge(sk);
    	tcp_fastopen_active_disable_ofo_check(sk);
    	skb_rbtree_purge(&tp->out_of_order_queue);
    
    	inet->inet_dport = 0;
    
    	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
    		inet_reset_saddr(sk);
    
    	sk->sk_shutdown = 0;
    	sock_reset_flag(sk, SOCK_DONE);
    	tp->srtt_us = 0;
    	tp->write_seq += tp->max_window + 2;
    	if (tp->write_seq == 0)
    		tp->write_seq = 1;
    	icsk->icsk_backoff = 0;
    	tp->snd_cwnd = 2;
    	icsk->icsk_probes_out = 0;
    	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
    	tp->snd_cwnd_cnt = 0;
    	tp->window_clamp = 0;
    	tp->delivered_ce = 0;
    	tcp_set_ca_state(sk, TCP_CA_Open);
    	tp->is_sack_reneg = 0;
    	tcp_clear_retrans(tp);
    	inet_csk_delack_init(sk);
    	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
    	 * issue in __tcp_select_window()
    	 */
    	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
    	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
    	__sk_dst_reset(sk);
    	dst_release(sk->sk_rx_dst);
    	sk->sk_rx_dst = NULL;
    	tcp_saved_syn_free(tp);
    	tp->compressed_ack = 0;
    
    	/* Clean up fastopen related fields */
    	tcp_free_fastopen_req(tp);
    	inet->defer_connect = 0;
    
    	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
    
    	if (sk->sk_frag.page) {
    		put_page(sk->sk_frag.page);
    		sk->sk_frag.page = NULL;
    		sk->sk_frag.offset = 0;
    	}
    
    	sk->sk_error_report(sk);
    	return err;
    }
    EXPORT_SYMBOL(tcp_disconnect);
    
    static inline bool tcp_can_repair_sock(const struct sock *sk)
    {
    	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
    		(sk->sk_state != TCP_LISTEN);
    }
    
    static int tcp_repair_set_window(struct tcp_sock *tp, char __user *optbuf, int len)
    {
    	struct tcp_repair_window opt;
    
    	if (!tp->repair)
    		return -EPERM;
    
    	if (len != sizeof(opt))
    		return -EINVAL;
    
    	if (copy_from_user(&opt, optbuf, sizeof(opt)))
    		return -EFAULT;
    
    	if (opt.max_window < opt.snd_wnd)
    		return -EINVAL;
    
    	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
    		return -EINVAL;
    
    	if (after(opt.rcv_wup, tp->rcv_nxt))
    		return -EINVAL;
    
    	tp->snd_wl1	= opt.snd_wl1;
    	tp->snd_wnd	= opt.snd_wnd;
    	tp->max_window	= opt.max_window;
    
    	tp->rcv_wnd	= opt.rcv_wnd;
    	tp->rcv_wup	= opt.rcv_wup;
    
    	return 0;
    }
    
    static int tcp_repair_options_est(struct sock *sk,
    		struct tcp_repair_opt __user *optbuf, unsigned int len)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct tcp_repair_opt opt;
    
    	while (len >= sizeof(opt)) {
    		if (copy_from_user(&opt, optbuf, sizeof(opt)))
    			return -EFAULT;
    
    		optbuf++;
    		len -= sizeof(opt);
    
    		switch (opt.opt_code) {
    		case TCPOPT_MSS:
    			tp->rx_opt.mss_clamp = opt.opt_val;
    			tcp_mtup_init(sk);
    			break;
    		case TCPOPT_WINDOW:
    			{
    				u16 snd_wscale = opt.opt_val & 0xFFFF;
    				u16 rcv_wscale = opt.opt_val >> 16;
    
    				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
    					return -EFBIG;
    
    				tp->rx_opt.snd_wscale = snd_wscale;
    				tp->rx_opt.rcv_wscale = rcv_wscale;
    				tp->rx_opt.wscale_ok = 1;
    			}
    			break;
    		case TCPOPT_SACK_PERM:
    			if (opt.opt_val != 0)
    				return -EINVAL;
    
    			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
    			break;
    		case TCPOPT_TIMESTAMP:
    			if (opt.opt_val != 0)
    				return -EINVAL;
    
    			tp->rx_opt.tstamp_ok = 1;
    			break;
    		}
    	}
    
    	return 0;
    }
    
    /*
     *	Socket option code for TCP.
     */
    static int do_tcp_setsockopt(struct sock *sk, int level,
    		int optname, char __user *optval, unsigned int optlen)
    {
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct net *net = sock_net(sk);
    	int val;
    	int err = 0;
    
    	/* These are data/string values, all the others are ints */
    	switch (optname) {
    	case TCP_CONGESTION: {
    		char name[TCP_CA_NAME_MAX];
    
    		if (optlen < 1)
    			return -EINVAL;
    
    		val = strncpy_from_user(name, optval,
    					min_t(long, TCP_CA_NAME_MAX-1, optlen));
    		if (val < 0)
    			return -EFAULT;
    		name[val] = 0;
    
    		lock_sock(sk);
    		err = tcp_set_congestion_control(sk, name, true, true);
    		release_sock(sk);
    		return err;
    	}
    	case TCP_ULP: {
    		char name[TCP_ULP_NAME_MAX];
    
    		if (optlen < 1)
    			return -EINVAL;
    
    		val = strncpy_from_user(name, optval,
    					min_t(long, TCP_ULP_NAME_MAX - 1,
    					      optlen));
    		if (val < 0)
    			return -EFAULT;
    		name[val] = 0;
    
    		lock_sock(sk);
    		err = tcp_set_ulp(sk, name);
    		release_sock(sk);
    		return err;
    	}
    	case TCP_FASTOPEN_KEY: {
    		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
    
    		if (optlen != sizeof(key))
    			return -EINVAL;
    
    		if (copy_from_user(key, optval, optlen))
    			return -EFAULT;
    
    		return tcp_fastopen_reset_cipher(net, sk, key, sizeof(key));
    	}
    	default:
    		/* fallthru */
    		break;
    	}
    
    	if (optlen < sizeof(int))
    		return -EINVAL;
    
    	if (get_user(val, (int __user *)optval))
    		return -EFAULT;
    
    	lock_sock(sk);
    
    	switch (optname) {
    	case TCP_MAXSEG:
    		/* Values greater than interface MTU won't take effect. However
    		 * at the point when this call is done we typically don't yet
    		 * know which interface is going to be used
    		 */
    		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
    			err = -EINVAL;
    			break;
    		}
    		tp->rx_opt.user_mss = val;
    		break;
    
    	case TCP_NODELAY:
    		if (val) {
    			/* TCP_NODELAY is weaker than TCP_CORK, so that
    			 * this option on corked socket is remembered, but
    			 * it is not activated until cork is cleared.
    			 *
    			 * However, when TCP_NODELAY is set we make
    			 * an explicit push, which overrides even TCP_CORK
    			 * for currently queued segments.
    			 */
    			tp->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
    			tcp_push_pending_frames(sk);
    		} else {
    			tp->nonagle &= ~TCP_NAGLE_OFF;
    		}
    		break;
    
    	case TCP_THIN_LINEAR_TIMEOUTS:
    		if (val < 0 || val > 1)
    			err = -EINVAL;
    		else
    			tp->thin_lto = val;
    		break;
    
    	case TCP_THIN_DUPACK:
    		if (val < 0 || val > 1)
    			err = -EINVAL;
    		break;
    
    	case TCP_REPAIR:
    		if (!tcp_can_repair_sock(sk))
    			err = -EPERM;
    		else if (val == TCP_REPAIR_ON) {
    			tp->repair = 1;
    			sk->sk_reuse = SK_FORCE_REUSE;
    			tp->repair_queue = TCP_NO_QUEUE;
    		} else if (val == TCP_REPAIR_OFF) {
    			tp->repair = 0;
    			sk->sk_reuse = SK_NO_REUSE;
    			tcp_send_window_probe(sk);
    		} else if (val == TCP_REPAIR_OFF_NO_WP) {
    			tp->repair = 0;
    			sk->sk_reuse = SK_NO_REUSE;
    		} else
    			err = -EINVAL;
    
    		break;
    
    	case TCP_REPAIR_QUEUE:
    		if (!tp->repair)
    			err = -EPERM;
    		else if ((unsigned int)val < TCP_QUEUES_NR)
    			tp->repair_queue = val;
    		else
    			err = -EINVAL;
    		break;
    
    	case TCP_QUEUE_SEQ:
    		if (sk->sk_state != TCP_CLOSE)
    			err = -EPERM;
    		else if (tp->repair_queue == TCP_SEND_QUEUE)
    			tp->write_seq = val;
    		else if (tp->repair_queue == TCP_RECV_QUEUE)
    			tp->rcv_nxt = val;
    		else
    			err = -EINVAL;
    		break;
    
    	case TCP_REPAIR_OPTIONS:
    		if (!tp->repair)
    			err = -EINVAL;
    		else if (sk->sk_state == TCP_ESTABLISHED)
    			err = tcp_repair_options_est(sk,
    					(struct tcp_repair_opt __user *)optval,
    					optlen);
    		else
    			err = -EPERM;
    		break;
    
    	case TCP_CORK:
    		/* When set indicates to always queue non-full frames.
    		 * Later the user clears this option and we transmit
    		 * any pending partial frames in the queue.  This is
    		 * meant to be used alongside sendfile() to get properly
    		 * filled frames when the user (for example) must write
    		 * out headers with a write() call first and then use
    		 * sendfile to send out the data parts.
    		 *
    		 * TCP_CORK can be set together with TCP_NODELAY and it is
    		 * stronger than TCP_NODELAY.
    		 */
    		if (val) {
    			tp->nonagle |= TCP_NAGLE_CORK;
    		} else {
    			tp->nonagle &= ~TCP_NAGLE_CORK;
    			if (tp->nonagle&TCP_NAGLE_OFF)
    				tp->nonagle |= TCP_NAGLE_PUSH;
    			tcp_push_pending_frames(sk);
    		}
    		break;
    
    	case TCP_KEEPIDLE:
    		if (val < 1 || val > MAX_TCP_KEEPIDLE)
    			err = -EINVAL;
    		else {
    			tp->keepalive_time = val * HZ;
    			if (sock_flag(sk, SOCK_KEEPOPEN) &&
    			    !((1 << sk->sk_state) &
    			      (TCPF_CLOSE | TCPF_LISTEN))) {
    				u32 elapsed = keepalive_time_elapsed(tp);
    				if (tp->keepalive_time > elapsed)
    					elapsed = tp->keepalive_time - elapsed;
    				else
    					elapsed = 0;
    				inet_csk_reset_keepalive_timer(sk, elapsed);
    			}
    		}
    		break;
    	case TCP_KEEPINTVL:
    		if (val < 1 || val > MAX_TCP_KEEPINTVL)
    			err = -EINVAL;
    		else
    			tp->keepalive_intvl = val * HZ;
    		break;
    	case TCP_KEEPCNT:
    		if (val < 1 || val > MAX_TCP_KEEPCNT)
    			err = -EINVAL;
    		else
    			tp->keepalive_probes = val;
    		break;
    	case TCP_SYNCNT:
    		if (val < 1 || val > MAX_TCP_SYNCNT)
    			err = -EINVAL;
    		else
    			icsk->icsk_syn_retries = val;
    		break;
    
    	case TCP_SAVE_SYN:
    		if (val < 0 || val > 1)
    			err = -EINVAL;
    		else
    			tp->save_syn = val;
    		break;
    
    	case TCP_LINGER2:
    		if (val < 0)
    			tp->linger2 = -1;
    		else if (val > net->ipv4.sysctl_tcp_fin_timeout / HZ)
    			tp->linger2 = 0;
    		else
    			tp->linger2 = val * HZ;
    		break;
    
    	case TCP_DEFER_ACCEPT:
    		/* Translate value in seconds to number of retransmits */
    		icsk->icsk_accept_queue.rskq_defer_accept =
    			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
    					TCP_RTO_MAX / HZ);
    		break;
    
    	case TCP_WINDOW_CLAMP:
    		if (!val) {
    			if (sk->sk_state != TCP_CLOSE) {
    				err = -EINVAL;
    				break;
    			}
    			tp->window_clamp = 0;
    		} else
    			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
    						SOCK_MIN_RCVBUF / 2 : val;
    		break;
    
    	case TCP_QUICKACK:
    		if (!val) {
    			icsk->icsk_ack.pingpong = 1;
    		} else {
    			icsk->icsk_ack.pingpong = 0;
    			if ((1 << sk->sk_state) &
    			    (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
    			    inet_csk_ack_scheduled(sk)) {
    				icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
    				tcp_cleanup_rbuf(sk, 1);
    				if (!(val & 1))
    					icsk->icsk_ack.pingpong = 1;
    			}
    		}
    		break;
    
    #ifdef CONFIG_TCP_MD5SIG
    	case TCP_MD5SIG:
    	case TCP_MD5SIG_EXT:
    		if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
    			err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
    		else
    			err = -EINVAL;
    		break;
    #endif
    	case TCP_USER_TIMEOUT:
    		/* Cap the max time in ms TCP will retry or probe the window
    		 * before giving up and aborting (ETIMEDOUT) a connection.
    		 */
    		if (val < 0)
    			err = -EINVAL;
    		else
    			icsk->icsk_user_timeout = msecs_to_jiffies(val);
    		break;
    
    	case TCP_FASTOPEN:
    		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
    		    TCPF_LISTEN))) {
    			tcp_fastopen_init_key_once(net);
    
    			fastopen_queue_tune(sk, val);
    		} else {
    			err = -EINVAL;
    		}
    		break;
    	case TCP_FASTOPEN_CONNECT:
    		if (val > 1 || val < 0) {
    			err = -EINVAL;
    		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
    			if (sk->sk_state == TCP_CLOSE)
    				tp->fastopen_connect = val;
    			else
    				err = -EINVAL;
    		} else {
    			err = -EOPNOTSUPP;
    		}
    		break;
    	case TCP_FASTOPEN_NO_COOKIE:
    		if (val > 1 || val < 0)
    			err = -EINVAL;
    		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
    			err = -EINVAL;
    		else
    			tp->fastopen_no_cookie = val;
    		break;
    	case TCP_TIMESTAMP:
    		if (!tp->repair)
    			err = -EPERM;
    		else
    			tp->tsoffset = val - tcp_time_stamp_raw();
    		break;
    	case TCP_REPAIR_WINDOW:
    		err = tcp_repair_set_window(tp, optval, optlen);
    		break;
    	case TCP_NOTSENT_LOWAT:
    		tp->notsent_lowat = val;
    		sk->sk_write_space(sk);
    		break;
    	case TCP_INQ:
    		if (val > 1 || val < 0)
    			err = -EINVAL;
    		else
    			tp->recvmsg_inq = val;
    		break;
    	default:
    		err = -ENOPROTOOPT;
    		break;
    	}
    
    	release_sock(sk);
    	return err;
    }
    
    int tcp_setsockopt(struct sock *sk, int level, int optname, char __user *optval,
    		   unsigned int optlen)
    {
    	const struct inet_connection_sock *icsk = inet_csk(sk);
    
    	if (level != SOL_TCP)
    		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
    						     optval, optlen);
    	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
    }
    EXPORT_SYMBOL(tcp_setsockopt);
    
    #ifdef CONFIG_COMPAT
    int compat_tcp_setsockopt(struct sock *sk, int level, int optname,
    			  char __user *optval, unsigned int optlen)
    {
    	if (level != SOL_TCP)
    		return inet_csk_compat_setsockopt(sk, level, optname,
    						  optval, optlen);
    	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
    }
    EXPORT_SYMBOL(compat_tcp_setsockopt);
    #endif
    
    static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
    				      struct tcp_info *info)
    {
    	u64 stats[__TCP_CHRONO_MAX], total = 0;
    	enum tcp_chrono i;
    
    	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
    		stats[i] = tp->chrono_stat[i - 1];
    		if (i == tp->chrono_type)
    			stats[i] += tcp_jiffies32 - tp->chrono_start;
    		stats[i] *= USEC_PER_SEC / HZ;
    		total += stats[i];
    	}
    
    	info->tcpi_busy_time = total;
    	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
    	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
    }
    
    /* Return information about state of tcp endpoint in API format. */
    void tcp_get_info(struct sock *sk, struct tcp_info *info)
    {
    	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
    	const struct inet_connection_sock *icsk = inet_csk(sk);
    	u32 now;
    	u64 rate64;
    	bool slow;
    	u32 rate;
    
    	memset(info, 0, sizeof(*info));
    	if (sk->sk_type != SOCK_STREAM)
    		return;
    
    	info->tcpi_state = inet_sk_state_load(sk);
    
    	/* Report meaningful fields for all TCP states, including listeners */
    	rate = READ_ONCE(sk->sk_pacing_rate);
    	rate64 = rate != ~0U ? rate : ~0ULL;
    	info->tcpi_pacing_rate = rate64;
    
    	rate = READ_ONCE(sk->sk_max_pacing_rate);
    	rate64 = rate != ~0U ? rate : ~0ULL;
    	info->tcpi_max_pacing_rate = rate64;
    
    	info->tcpi_reordering = tp->reordering;
    	info->tcpi_snd_cwnd = tp->snd_cwnd;
    
    	if (info->tcpi_state == TCP_LISTEN) {
    		/* listeners aliased fields :
    		 * tcpi_unacked -> Number of children ready for accept()
    		 * tcpi_sacked  -> max backlog
    		 */
    		info->tcpi_unacked = sk->sk_ack_backlog;
    		info->tcpi_sacked = sk->sk_max_ack_backlog;
    		return;
    	}
    
    	slow = lock_sock_fast(sk);
    
    	info->tcpi_ca_state = icsk->icsk_ca_state;
    	info->tcpi_retransmits = icsk->icsk_retransmits;
    	info->tcpi_probes = icsk->icsk_probes_out;
    	info->tcpi_backoff = icsk->icsk_backoff;
    
    	if (tp->rx_opt.tstamp_ok)
    		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
    	if (tcp_is_sack(tp))
    		info->tcpi_options |= TCPI_OPT_SACK;
    	if (tp->rx_opt.wscale_ok) {
    		info->tcpi_options |= TCPI_OPT_WSCALE;
    		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
    		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
    	}
    
    	if (tp->ecn_flags & TCP_ECN_OK)
    		info->tcpi_options |= TCPI_OPT_ECN;
    	if (tp->ecn_flags & TCP_ECN_SEEN)
    		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
    	if (tp->syn_data_acked)
    		info->tcpi_options |= TCPI_OPT_SYN_DATA;
    
    	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
    	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
    	info->tcpi_snd_mss = tp->mss_cache;
    	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
    
    	info->tcpi_unacked = tp->packets_out;
    	info->tcpi_sacked = tp->sacked_out;
    
    	info->tcpi_lost = tp->lost_out;
    	info->tcpi_retrans = tp->retrans_out;
    
    	now = tcp_jiffies32;
    	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
    	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
    	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
    
    	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
    	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
    	info->tcpi_rtt = tp->srtt_us >> 3;
    	info->tcpi_rttvar = tp->mdev_us >> 2;
    	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
    	info->tcpi_advmss = tp->advmss;
    
    	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
    	info->tcpi_rcv_space = tp->rcvq_space.space;
    
    	info->tcpi_total_retrans = tp->total_retrans;
    
    	info->tcpi_bytes_acked = tp->bytes_acked;
    	info->tcpi_bytes_received = tp->bytes_received;
    	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
    	tcp_get_info_chrono_stats(tp, info);
    
    	info->tcpi_segs_out = tp->segs_out;
    	info->tcpi_segs_in = tp->segs_in;
    
    	info->tcpi_min_rtt = tcp_min_rtt(tp);
    	info->tcpi_data_segs_in = tp->data_segs_in;
    	info->tcpi_data_segs_out = tp->data_segs_out;
    
    	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
    	rate64 = tcp_compute_delivery_rate(tp);
    	if (rate64)
    		info->tcpi_delivery_rate = rate64;
    	info->tcpi_delivered = tp->delivered;
    	info->tcpi_delivered_ce = tp->delivered_ce;
    	unlock_sock_fast(sk, slow);
    }
    EXPORT_SYMBOL_GPL(tcp_get_info);
    
    struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk)
    {
    	const struct tcp_sock *tp = tcp_sk(sk);
    	struct sk_buff *stats;
    	struct tcp_info info;
    	u64 rate64;
    	u32 rate;
    
    	stats = alloc_skb(7 * nla_total_size_64bit(sizeof(u64)) +
    			  7 * nla_total_size(sizeof(u32)) +
    			  3 * nla_total_size(sizeof(u8)), GFP_ATOMIC);
    	if (!stats)
    		return NULL;
    
    	tcp_get_info_chrono_stats(tp, &info);
    	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
    			  info.tcpi_busy_time, TCP_NLA_PAD);
    	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
    			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
    	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
    			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
    	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
    			  tp->data_segs_out, TCP_NLA_PAD);
    	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
    			  tp->total_retrans, TCP_NLA_PAD);
    
    	rate = READ_ONCE(sk->sk_pacing_rate);
    	rate64 = rate != ~0U ? rate : ~0ULL;
    	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
    
    	rate64 = tcp_compute_delivery_rate(tp);
    	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
    
    	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
    	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
    	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
    
    	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
    	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
    	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
    	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
    	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
    
    	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
    	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
    
    	return stats;
    }
    
    static int do_tcp_getsockopt(struct sock *sk, int level,
    		int optname, char __user *optval, int __user *optlen)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    	struct tcp_sock *tp = tcp_sk(sk);
    	struct net *net = sock_net(sk);
    	int val, len;
    
    	if (get_user(len, optlen))
    		return -EFAULT;
    
    	len = min_t(unsigned int, len, sizeof(int));
    
    	if (len < 0)
    		return -EINVAL;
    
    	switch (optname) {
    	case TCP_MAXSEG:
    		val = tp->mss_cache;
    		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
    			val = tp->rx_opt.user_mss;
    		if (tp->repair)
    			val = tp->rx_opt.mss_clamp;
    		break;
    	case TCP_NODELAY:
    		val = !!(tp->nonagle&TCP_NAGLE_OFF);
    		break;
    	case TCP_CORK:
    		val = !!(tp->nonagle&TCP_NAGLE_CORK);
    		break;
    	case TCP_KEEPIDLE:
    		val = keepalive_time_when(tp) / HZ;
    		break;
    	case TCP_KEEPINTVL:
    		val = keepalive_intvl_when(tp) / HZ;
    		break;
    	case TCP_KEEPCNT:
    		val = keepalive_probes(tp);
    		break;
    	case TCP_SYNCNT:
    		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
    		break;
    	case TCP_LINGER2:
    		val = tp->linger2;
    		if (val >= 0)
    			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
    		break;
    	case TCP_DEFER_ACCEPT:
    		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
    				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
    		break;
    	case TCP_WINDOW_CLAMP:
    		val = tp->window_clamp;
    		break;
    	case TCP_INFO: {
    		struct tcp_info info;
    
    		if (get_user(len, optlen))
    			return -EFAULT;
    
    		tcp_get_info(sk, &info);
    
    		len = min_t(unsigned int, len, sizeof(info));
    		if (put_user(len, optlen))
    			return -EFAULT;
    		if (copy_to_user(optval, &info, len))
    			return -EFAULT;
    		return 0;
    	}
    	case TCP_CC_INFO: {
    		const struct tcp_congestion_ops *ca_ops;
    		union tcp_cc_info info;
    		size_t sz = 0;
    		int attr;
    
    		if (get_user(len, optlen))
    			return -EFAULT;
    
    		ca_ops = icsk->icsk_ca_ops;
    		if (ca_ops && ca_ops->get_info)
    			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
    
    		len = min_t(unsigned int, len, sz);
    		if (put_user(len, optlen))
    			return -EFAULT;
    		if (copy_to_user(optval, &info, len))
    			return -EFAULT;
    		return 0;
    	}
    	case TCP_QUICKACK:
    		val = !icsk->icsk_ack.pingpong;
    		break;
    
    	case TCP_CONGESTION:
    		if (get_user(len, optlen))
    			return -EFAULT;
    		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
    		if (put_user(len, optlen))
    			return -EFAULT;
    		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
    			return -EFAULT;
    		return 0;
    
    	case TCP_ULP:
    		if (get_user(len, optlen))
    			return -EFAULT;
    		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
    		if (!icsk->icsk_ulp_ops) {
    			if (put_user(0, optlen))
    				return -EFAULT;
    			return 0;
    		}
    		if (put_user(len, optlen))
    			return -EFAULT;
    		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
    			return -EFAULT;
    		return 0;
    
    	case TCP_FASTOPEN_KEY: {
    		__u8 key[TCP_FASTOPEN_KEY_LENGTH];
    		struct tcp_fastopen_context *ctx;
    
    		if (get_user(len, optlen))
    			return -EFAULT;
    
    		rcu_read_lock();
    		ctx = rcu_dereference(icsk->icsk_accept_queue.fastopenq.ctx);
    		if (ctx)
    			memcpy(key, ctx->key, sizeof(key));
    		else
    			len = 0;
    		rcu_read_unlock();
    
    		len = min_t(unsigned int, len, sizeof(key));
    		if (put_user(len, optlen))
    			return -EFAULT;
    		if (copy_to_user(optval, key, len))
    			return -EFAULT;
    		return 0;
    	}
    	case TCP_THIN_LINEAR_TIMEOUTS:
    		val = tp->thin_lto;
    		break;
    
    	case TCP_THIN_DUPACK:
    		val = 0;
    		break;
    
    	case TCP_REPAIR:
    		val = tp->repair;
    		break;
    
    	case TCP_REPAIR_QUEUE:
    		if (tp->repair)
    			val = tp->repair_queue;
    		else
    			return -EINVAL;
    		break;
    
    	case TCP_REPAIR_WINDOW: {
    		struct tcp_repair_window opt;
    
    		if (get_user(len, optlen))
    			return -EFAULT;
    
    		if (len != sizeof(opt))
    			return -EINVAL;
    
    		if (!tp->repair)
    			return -EPERM;
    
    		opt.snd_wl1	= tp->snd_wl1;
    		opt.snd_wnd	= tp->snd_wnd;
    		opt.max_window	= tp->max_window;
    		opt.rcv_wnd	= tp->rcv_wnd;
    		opt.rcv_wup	= tp->rcv_wup;
    
    		if (copy_to_user(optval, &opt, len))
    			return -EFAULT;
    		return 0;
    	}
    	case TCP_QUEUE_SEQ:
    		if (tp->repair_queue == TCP_SEND_QUEUE)
    			val = tp->write_seq;
    		else if (tp->repair_queue == TCP_RECV_QUEUE)
    			val = tp->rcv_nxt;
    		else
    			return -EINVAL;
    		break;
    
    	case TCP_USER_TIMEOUT:
    		val = jiffies_to_msecs(icsk->icsk_user_timeout);
    		break;
    
    	case TCP_FASTOPEN:
    		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
    		break;
    
    	case TCP_FASTOPEN_CONNECT:
    		val = tp->fastopen_connect;
    		break;
    
    	case TCP_FASTOPEN_NO_COOKIE:
    		val = tp->fastopen_no_cookie;
    		break;
    
    	case TCP_TIMESTAMP:
    		val = tcp_time_stamp_raw() + tp->tsoffset;
    		break;
    	case TCP_NOTSENT_LOWAT:
    		val = tp->notsent_lowat;
    		break;
    	case TCP_INQ:
    		val = tp->recvmsg_inq;
    		break;
    	case TCP_SAVE_SYN:
    		val = tp->save_syn;
    		break;
    	case TCP_SAVED_SYN: {
    		if (get_user(len, optlen))
    			return -EFAULT;
    
    		lock_sock(sk);
    		if (tp->saved_syn) {
    			if (len < tp->saved_syn[0]) {
    				if (put_user(tp->saved_syn[0], optlen)) {
    					release_sock(sk);
    					return -EFAULT;
    				}
    				release_sock(sk);
    				return -EINVAL;
    			}
    			len = tp->saved_syn[0];
    			if (put_user(len, optlen)) {
    				release_sock(sk);
    				return -EFAULT;
    			}
    			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
    				release_sock(sk);
    				return -EFAULT;
    			}
    			tcp_saved_syn_free(tp);
    			release_sock(sk);
    		} else {
    			release_sock(sk);
    			len = 0;
    			if (put_user(len, optlen))
    				return -EFAULT;
    		}
    		return 0;
    	}
    #ifdef CONFIG_MMU
    	case TCP_ZEROCOPY_RECEIVE: {
    		struct tcp_zerocopy_receive zc;
    		int err;
    
    		if (get_user(len, optlen))
    			return -EFAULT;
    		if (len != sizeof(zc))
    			return -EINVAL;
    		if (copy_from_user(&zc, optval, len))
    			return -EFAULT;
    		lock_sock(sk);
    		err = tcp_zerocopy_receive(sk, &zc);
    		release_sock(sk);
    		if (!err && copy_to_user(optval, &zc, len))
    			err = -EFAULT;
    		return err;
    	}
    #endif
    	default:
    		return -ENOPROTOOPT;
    	}
    
    	if (put_user(len, optlen))
    		return -EFAULT;
    	if (copy_to_user(optval, &val, len))
    		return -EFAULT;
    	return 0;
    }
    
    int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
    		   int __user *optlen)
    {
    	struct inet_connection_sock *icsk = inet_csk(sk);
    
    	if (level != SOL_TCP)
    		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
    						     optval, optlen);
    	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
    }
    EXPORT_SYMBOL(tcp_getsockopt);
    
    #ifdef CONFIG_COMPAT
    int compat_tcp_getsockopt(struct sock *sk, int level, int optname,
    			  char __user *optval, int __user *optlen)
    {
    	if (level != SOL_TCP)
    		return inet_csk_compat_getsockopt(sk, level, optname,
    						  optval, optlen);
    	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
    }
    EXPORT_SYMBOL(compat_tcp_getsockopt);
    #endif
    
    #ifdef CONFIG_TCP_MD5SIG
    static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
    static DEFINE_MUTEX(tcp_md5sig_mutex);
    static bool tcp_md5sig_pool_populated = false;
    
    static void __tcp_alloc_md5sig_pool(void)
    {
    	struct crypto_ahash *hash;
    	int cpu;
    
    	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
    	if (IS_ERR(hash))
    		return;
    
    	for_each_possible_cpu(cpu) {
    		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
    		struct ahash_request *req;
    
    		if (!scratch) {
    			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
    					       sizeof(struct tcphdr),
    					       GFP_KERNEL,
    					       cpu_to_node(cpu));
    			if (!scratch)
    				return;
    			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
    		}
    		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
    			continue;
    
    		req = ahash_request_alloc(hash, GFP_KERNEL);
    		if (!req)
    			return;
    
    		ahash_request_set_callback(req, 0, NULL, NULL);
    
    		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
    	}
    	/* before setting tcp_md5sig_pool_populated, we must commit all writes
    	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
    	 */
    	smp_wmb();
    	tcp_md5sig_pool_populated = true;
    }
    
    bool tcp_alloc_md5sig_pool(void)
    {
    	if (unlikely(!tcp_md5sig_pool_populated)) {
    		mutex_lock(&tcp_md5sig_mutex);
    
    		if (!tcp_md5sig_pool_populated)
    			__tcp_alloc_md5sig_pool();
    
    		mutex_unlock(&tcp_md5sig_mutex);
    	}
    	return tcp_md5sig_pool_populated;
    }
    EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
    
    
    /**
     *	tcp_get_md5sig_pool - get md5sig_pool for this user
     *
     *	We use percpu structure, so if we succeed, we exit with preemption
     *	and BH disabled, to make sure another thread or softirq handling
     *	wont try to get same context.
     */
    struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
    {
    	local_bh_disable();
    
    	if (tcp_md5sig_pool_populated) {
    		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
    		smp_rmb();
    		return this_cpu_ptr(&tcp_md5sig_pool);
    	}
    	local_bh_enable();
    	return NULL;
    }
    EXPORT_SYMBOL(tcp_get_md5sig_pool);
    
    int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
    			  const struct sk_buff *skb, unsigned int header_len)
    {
    	struct scatterlist sg;
    	const struct tcphdr *tp = tcp_hdr(skb);
    	struct ahash_request *req = hp->md5_req;
    	unsigned int i;
    	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
    					   skb_headlen(skb) - header_len : 0;
    	const struct skb_shared_info *shi = skb_shinfo(skb);
    	struct sk_buff *frag_iter;
    
    	sg_init_table(&sg, 1);
    
    	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
    	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
    	if (crypto_ahash_update(req))
    		return 1;
    
    	for (i = 0; i < shi->nr_frags; ++i) {
    		const struct skb_frag_struct *f = &shi->frags[i];
    		unsigned int offset = f->page_offset;
    		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
    
    		sg_set_page(&sg, page, skb_frag_size(f),
    			    offset_in_page(offset));
    		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
    		if (crypto_ahash_update(req))
    			return 1;
    	}
    
    	skb_walk_frags(skb, frag_iter)
    		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
    			return 1;
    
    	return 0;
    }
    EXPORT_SYMBOL(tcp_md5_hash_skb_data);
    
    int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
    {
    	struct scatterlist sg;
    
    	sg_init_one(&sg, key->key, key->keylen);
    	ahash_request_set_crypt(hp->md5_req, &sg, NULL, key->keylen);
    	return crypto_ahash_update(hp->md5_req);
    }
    EXPORT_SYMBOL(tcp_md5_hash_key);
    
    #endif
    
    void tcp_done(struct sock *sk)
    {
    	struct request_sock *req = tcp_sk(sk)->fastopen_rsk;
    
    	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
    		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
    
    	tcp_set_state(sk, TCP_CLOSE);
    	tcp_clear_xmit_timers(sk);
    	if (req)
    		reqsk_fastopen_remove(sk, req, false);
    
    	sk->sk_shutdown = SHUTDOWN_MASK;
    
    	if (!sock_flag(sk, SOCK_DEAD))
    		sk->sk_state_change(sk);
    	else
    		inet_csk_destroy_sock(sk);
    }
    EXPORT_SYMBOL_GPL(tcp_done);
    
    int tcp_abort(struct sock *sk, int err)
    {
    	if (!sk_fullsock(sk)) {
    		if (sk->sk_state == TCP_NEW_SYN_RECV) {
    			struct request_sock *req = inet_reqsk(sk);
    
    			local_bh_disable();
    			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
    			local_bh_enable();
    			return 0;
    		}
    		return -EOPNOTSUPP;
    	}
    
    	/* Don't race with userspace socket closes such as tcp_close. */
    	lock_sock(sk);
    
    	if (sk->sk_state == TCP_LISTEN) {
    		tcp_set_state(sk, TCP_CLOSE);
    		inet_csk_listen_stop(sk);
    	}
    
    	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
    	local_bh_disable();
    	bh_lock_sock(sk);
    
    	if (!sock_flag(sk, SOCK_DEAD)) {
    		sk->sk_err = err;
    		/* This barrier is coupled with smp_rmb() in tcp_poll() */
    		smp_wmb();
    		sk->sk_error_report(sk);
    		if (tcp_need_reset(sk->sk_state))
    			tcp_send_active_reset(sk, GFP_ATOMIC);
    		tcp_done(sk);
    	}
    
    	bh_unlock_sock(sk);
    	local_bh_enable();
    	tcp_write_queue_purge(sk);
    	release_sock(sk);
    	return 0;
    }
    EXPORT_SYMBOL_GPL(tcp_abort);
    
    extern struct tcp_congestion_ops tcp_reno;
    
    static __initdata unsigned long thash_entries;
    static int __init set_thash_entries(char *str)
    {
    	ssize_t ret;
    
    	if (!str)
    		return 0;
    
    	ret = kstrtoul(str, 0, &thash_entries);
    	if (ret)
    		return 0;
    
    	return 1;
    }
    __setup("thash_entries=", set_thash_entries);
    
    static void __init tcp_init_mem(void)
    {
    	unsigned long limit = nr_free_buffer_pages() / 16;
    
    	limit = max(limit, 128UL);
    	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
    	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
    	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
    }
    
    void __init tcp_init(void)
    {
    	int max_rshare, max_wshare, cnt;
    	unsigned long limit;
    	unsigned int i;
    
    	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
    		     FIELD_SIZEOF(struct sk_buff, cb));
    
    	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
    	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
    	inet_hashinfo_init(&tcp_hashinfo);
    	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
    			    thash_entries, 21,  /* one slot per 2 MB*/
    			    0, 64 * 1024);
    	tcp_hashinfo.bind_bucket_cachep =
    		kmem_cache_create("tcp_bind_bucket",
    				  sizeof(struct inet_bind_bucket), 0,
    				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
    
    	/* Size and allocate the main established and bind bucket
    	 * hash tables.
    	 *
    	 * The methodology is similar to that of the buffer cache.
    	 */
    	tcp_hashinfo.ehash =
    		alloc_large_system_hash("TCP established",
    					sizeof(struct inet_ehash_bucket),
    					thash_entries,
    					17, /* one slot per 128 KB of memory */
    					0,
    					NULL,
    					&tcp_hashinfo.ehash_mask,
    					0,
    					thash_entries ? 0 : 512 * 1024);
    	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
    		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
    
    	if (inet_ehash_locks_alloc(&tcp_hashinfo))
    		panic("TCP: failed to alloc ehash_locks");
    	tcp_hashinfo.bhash =
    		alloc_large_system_hash("TCP bind",
    					sizeof(struct inet_bind_hashbucket),
    					tcp_hashinfo.ehash_mask + 1,
    					17, /* one slot per 128 KB of memory */
    					0,
    					&tcp_hashinfo.bhash_size,
    					NULL,
    					0,
    					64 * 1024);
    	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
    	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
    		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
    		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
    	}
    
    
    	cnt = tcp_hashinfo.ehash_mask + 1;
    	sysctl_tcp_max_orphans = cnt / 2;
    
    	tcp_init_mem();
    	/* Set per-socket limits to no more than 1/128 the pressure threshold */
    	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
    	max_wshare = min(4UL*1024*1024, limit);
    	max_rshare = min(6UL*1024*1024, limit);
    
    	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
    	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
    	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
    
    	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
    	init_net.ipv4.sysctl_tcp_rmem[1] = 87380;
    	init_net.ipv4.sysctl_tcp_rmem[2] = max(87380, max_rshare);
    
    	pr_info("Hash tables configured (established %u bind %u)\n",
    		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
    
    	tcp_v4_init();
    	tcp_metrics_init();
    	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
    	tcp_tasklet_init();
    }