Skip to content
Snippets Groups Projects
Select Git revision
  • f5bf18fa22f8c41a13eb8762c7373eb3a93a7333
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

sparse.c

Blame
  • netdevice.h 73.41 KiB
    /*
     * INET		An implementation of the TCP/IP protocol suite for the LINUX
     *		operating system.  INET is implemented using the  BSD Socket
     *		interface as the means of communication with the user level.
     *
     *		Definitions for the Interfaces handler.
     *
     * Version:	@(#)dev.h	1.0.10	08/12/93
     *
     * Authors:	Ross Biro
     *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
     *		Corey Minyard <wf-rch!minyard@relay.EU.net>
     *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
     *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
     *		Bjorn Ekwall. <bj0rn@blox.se>
     *              Pekka Riikonen <priikone@poseidon.pspt.fi>
     *
     *		This program is free software; you can redistribute it and/or
     *		modify it under the terms of the GNU General Public License
     *		as published by the Free Software Foundation; either version
     *		2 of the License, or (at your option) any later version.
     *
     *		Moved to /usr/include/linux for NET3
     */
    #ifndef _LINUX_NETDEVICE_H
    #define _LINUX_NETDEVICE_H
    
    #include <linux/if.h>
    #include <linux/if_ether.h>
    #include <linux/if_packet.h>
    #include <linux/if_link.h>
    
    #ifdef __KERNEL__
    #include <linux/pm_qos_params.h>
    #include <linux/timer.h>
    #include <linux/delay.h>
    #include <linux/mm.h>
    #include <asm/atomic.h>
    #include <asm/cache.h>
    #include <asm/byteorder.h>
    
    #include <linux/device.h>
    #include <linux/percpu.h>
    #include <linux/rculist.h>
    #include <linux/dmaengine.h>
    #include <linux/workqueue.h>
    
    #include <linux/ethtool.h>
    #include <net/net_namespace.h>
    #include <net/dsa.h>
    #ifdef CONFIG_DCB
    #include <net/dcbnl.h>
    #endif
    
    struct vlan_group;
    struct netpoll_info;
    struct phy_device;
    /* 802.11 specific */
    struct wireless_dev;
    					/* source back-compat hooks */
    #define SET_ETHTOOL_OPS(netdev,ops) \
    	( (netdev)->ethtool_ops = (ops) )
    
    #define HAVE_ALLOC_NETDEV		/* feature macro: alloc_xxxdev
    					   functions are available. */
    #define HAVE_FREE_NETDEV		/* free_netdev() */
    #define HAVE_NETDEV_PRIV		/* netdev_priv() */
    
    /* hardware address assignment types */
    #define NET_ADDR_PERM		0	/* address is permanent (default) */
    #define NET_ADDR_RANDOM		1	/* address is generated randomly */
    #define NET_ADDR_STOLEN		2	/* address is stolen from other device */
    
    /* Backlog congestion levels */
    #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
    #define NET_RX_DROP		1	/* packet dropped */
    
    /*
     * Transmit return codes: transmit return codes originate from three different
     * namespaces:
     *
     * - qdisc return codes
     * - driver transmit return codes
     * - errno values
     *
     * Drivers are allowed to return any one of those in their hard_start_xmit()
     * function. Real network devices commonly used with qdiscs should only return
     * the driver transmit return codes though - when qdiscs are used, the actual
     * transmission happens asynchronously, so the value is not propagated to
     * higher layers. Virtual network devices transmit synchronously, in this case
     * the driver transmit return codes are consumed by dev_queue_xmit(), all
     * others are propagated to higher layers.
     */
    
    /* qdisc ->enqueue() return codes. */
    #define NET_XMIT_SUCCESS	0x00
    #define NET_XMIT_DROP		0x01	/* skb dropped			*/
    #define NET_XMIT_CN		0x02	/* congestion notification	*/
    #define NET_XMIT_POLICED	0x03	/* skb is shot by police	*/
    #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
    
    /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
     * indicates that the device will soon be dropping packets, or already drops
     * some packets of the same priority; prompting us to send less aggressively. */
    #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
    #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
    
    /* Driver transmit return codes */
    #define NETDEV_TX_MASK		0xf0
    
    enum netdev_tx {
    	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
    	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
    	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
    	NETDEV_TX_LOCKED = 0x20,	/* driver tx lock was already taken */
    };
    typedef enum netdev_tx netdev_tx_t;
    
    /*
     * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
     * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
     */
    static inline bool dev_xmit_complete(int rc)
    {
    	/*
    	 * Positive cases with an skb consumed by a driver:
    	 * - successful transmission (rc == NETDEV_TX_OK)
    	 * - error while transmitting (rc < 0)
    	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
    	 */
    	if (likely(rc < NET_XMIT_MASK))
    		return true;
    
    	return false;
    }
    
    #endif
    
    #define MAX_ADDR_LEN	32		/* Largest hardware address length */
    
    #ifdef  __KERNEL__
    /*
     *	Compute the worst case header length according to the protocols
     *	used.
     */
    
    #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
    # if defined(CONFIG_MAC80211_MESH)
    #  define LL_MAX_HEADER 128
    # else
    #  define LL_MAX_HEADER 96
    # endif
    #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
    # define LL_MAX_HEADER 48
    #else
    # define LL_MAX_HEADER 32
    #endif
    
    #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
        !defined(CONFIG_NET_IPGRE) &&  !defined(CONFIG_NET_IPGRE_MODULE) && \
        !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
        !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
    #define MAX_HEADER LL_MAX_HEADER
    #else
    #define MAX_HEADER (LL_MAX_HEADER + 48)
    #endif
    
    /*
     *	Old network device statistics. Fields are native words
     *	(unsigned long) so they can be read and written atomically.
     */
    
    struct net_device_stats {
    	unsigned long	rx_packets;
    	unsigned long	tx_packets;
    	unsigned long	rx_bytes;
    	unsigned long	tx_bytes;
    	unsigned long	rx_errors;
    	unsigned long	tx_errors;
    	unsigned long	rx_dropped;
    	unsigned long	tx_dropped;
    	unsigned long	multicast;
    	unsigned long	collisions;
    	unsigned long	rx_length_errors;
    	unsigned long	rx_over_errors;
    	unsigned long	rx_crc_errors;
    	unsigned long	rx_frame_errors;
    	unsigned long	rx_fifo_errors;
    	unsigned long	rx_missed_errors;
    	unsigned long	tx_aborted_errors;
    	unsigned long	tx_carrier_errors;
    	unsigned long	tx_fifo_errors;
    	unsigned long	tx_heartbeat_errors;
    	unsigned long	tx_window_errors;
    	unsigned long	rx_compressed;
    	unsigned long	tx_compressed;
    };
    
    #endif  /*  __KERNEL__  */
    
    
    /* Media selection options. */
    enum {
            IF_PORT_UNKNOWN = 0,
            IF_PORT_10BASE2,
            IF_PORT_10BASET,
            IF_PORT_AUI,
            IF_PORT_100BASET,
            IF_PORT_100BASETX,
            IF_PORT_100BASEFX
    };
    
    #ifdef __KERNEL__
    
    #include <linux/cache.h>
    #include <linux/skbuff.h>
    
    struct neighbour;
    struct neigh_parms;
    struct sk_buff;
    
    struct netdev_hw_addr {
    	struct list_head	list;
    	unsigned char		addr[MAX_ADDR_LEN];
    	unsigned char		type;
    #define NETDEV_HW_ADDR_T_LAN		1
    #define NETDEV_HW_ADDR_T_SAN		2
    #define NETDEV_HW_ADDR_T_SLAVE		3
    #define NETDEV_HW_ADDR_T_UNICAST	4
    #define NETDEV_HW_ADDR_T_MULTICAST	5
    	bool			synced;
    	bool			global_use;
    	int			refcount;
    	struct rcu_head		rcu_head;
    };
    
    struct netdev_hw_addr_list {
    	struct list_head	list;
    	int			count;
    };
    
    #define netdev_hw_addr_list_count(l) ((l)->count)
    #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
    #define netdev_hw_addr_list_for_each(ha, l) \
    	list_for_each_entry(ha, &(l)->list, list)
    
    #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
    #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
    #define netdev_for_each_uc_addr(ha, dev) \
    	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
    
    #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
    #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
    #define netdev_for_each_mc_addr(ha, dev) \
    	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
    
    struct hh_cache {
    	struct hh_cache *hh_next;	/* Next entry			     */
    	atomic_t	hh_refcnt;	/* number of users                   */
    /*
     * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
     * cache line on SMP.
     * They are mostly read, but hh_refcnt may be changed quite frequently,
     * incurring cache line ping pongs.
     */
    	__be16		hh_type ____cacheline_aligned_in_smp;
    					/* protocol identifier, f.e ETH_P_IP
                                             *  NOTE:  For VLANs, this will be the
                                             *  encapuslated type. --BLG
                                             */
    	u16		hh_len;		/* length of header */
    	int		(*hh_output)(struct sk_buff *skb);
    	seqlock_t	hh_lock;
    
    	/* cached hardware header; allow for machine alignment needs.        */
    #define HH_DATA_MOD	16
    #define HH_DATA_OFF(__len) \
    	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
    #define HH_DATA_ALIGN(__len) \
    	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
    	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
    };
    
    static inline void hh_cache_put(struct hh_cache *hh)
    {
    	if (atomic_dec_and_test(&hh->hh_refcnt))
    		kfree(hh);
    }
    
    /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
     * Alternative is:
     *   dev->hard_header_len ? (dev->hard_header_len +
     *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
     *
     * We could use other alignment values, but we must maintain the
     * relationship HH alignment <= LL alignment.
     *
     * LL_ALLOCATED_SPACE also takes into account the tailroom the device
     * may need.
     */
    #define LL_RESERVED_SPACE(dev) \
    	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
    #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
    	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
    #define LL_ALLOCATED_SPACE(dev) \
    	((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
    
    struct header_ops {
    	int	(*create) (struct sk_buff *skb, struct net_device *dev,
    			   unsigned short type, const void *daddr,
    			   const void *saddr, unsigned len);
    	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
    	int	(*rebuild)(struct sk_buff *skb);
    #define HAVE_HEADER_CACHE
    	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh);
    	void	(*cache_update)(struct hh_cache *hh,
    				const struct net_device *dev,
    				const unsigned char *haddr);
    };
    
    /* These flag bits are private to the generic network queueing
     * layer, they may not be explicitly referenced by any other
     * code.
     */
    
    enum netdev_state_t {
    	__LINK_STATE_START,
    	__LINK_STATE_PRESENT,
    	__LINK_STATE_NOCARRIER,
    	__LINK_STATE_LINKWATCH_PENDING,
    	__LINK_STATE_DORMANT,
    };
    
    
    /*
     * This structure holds at boot time configured netdevice settings. They
     * are then used in the device probing.
     */
    struct netdev_boot_setup {
    	char name[IFNAMSIZ];
    	struct ifmap map;
    };
    #define NETDEV_BOOT_SETUP_MAX 8
    
    extern int __init netdev_boot_setup(char *str);
    
    /*
     * Structure for NAPI scheduling similar to tasklet but with weighting
     */
    struct napi_struct {
    	/* The poll_list must only be managed by the entity which
    	 * changes the state of the NAPI_STATE_SCHED bit.  This means
    	 * whoever atomically sets that bit can add this napi_struct
    	 * to the per-cpu poll_list, and whoever clears that bit
    	 * can remove from the list right before clearing the bit.
    	 */
    	struct list_head	poll_list;
    
    	unsigned long		state;
    	int			weight;
    	int			(*poll)(struct napi_struct *, int);
    #ifdef CONFIG_NETPOLL
    	spinlock_t		poll_lock;
    	int			poll_owner;
    #endif
    
    	unsigned int		gro_count;
    
    	struct net_device	*dev;
    	struct list_head	dev_list;
    	struct sk_buff		*gro_list;
    	struct sk_buff		*skb;
    };
    
    enum {
    	NAPI_STATE_SCHED,	/* Poll is scheduled */
    	NAPI_STATE_DISABLE,	/* Disable pending */
    	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
    };
    
    enum gro_result {
    	GRO_MERGED,
    	GRO_MERGED_FREE,
    	GRO_HELD,
    	GRO_NORMAL,
    	GRO_DROP,
    };
    typedef enum gro_result gro_result_t;
    
    typedef struct sk_buff *rx_handler_func_t(struct sk_buff *skb);
    
    extern void __napi_schedule(struct napi_struct *n);
    
    static inline int napi_disable_pending(struct napi_struct *n)
    {
    	return test_bit(NAPI_STATE_DISABLE, &n->state);
    }
    
    /**
     *	napi_schedule_prep - check if napi can be scheduled
     *	@n: napi context
     *
     * Test if NAPI routine is already running, and if not mark
     * it as running.  This is used as a condition variable
     * insure only one NAPI poll instance runs.  We also make
     * sure there is no pending NAPI disable.
     */
    static inline int napi_schedule_prep(struct napi_struct *n)
    {
    	return !napi_disable_pending(n) &&
    		!test_and_set_bit(NAPI_STATE_SCHED, &n->state);
    }
    
    /**
     *	napi_schedule - schedule NAPI poll
     *	@n: napi context
     *
     * Schedule NAPI poll routine to be called if it is not already
     * running.
     */
    static inline void napi_schedule(struct napi_struct *n)
    {
    	if (napi_schedule_prep(n))
    		__napi_schedule(n);
    }
    
    /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
    static inline int napi_reschedule(struct napi_struct *napi)
    {
    	if (napi_schedule_prep(napi)) {
    		__napi_schedule(napi);
    		return 1;
    	}
    	return 0;
    }
    
    /**
     *	napi_complete - NAPI processing complete
     *	@n: napi context
     *
     * Mark NAPI processing as complete.
     */
    extern void __napi_complete(struct napi_struct *n);
    extern void napi_complete(struct napi_struct *n);
    
    /**
     *	napi_disable - prevent NAPI from scheduling
     *	@n: napi context
     *
     * Stop NAPI from being scheduled on this context.
     * Waits till any outstanding processing completes.
     */
    static inline void napi_disable(struct napi_struct *n)
    {
    	set_bit(NAPI_STATE_DISABLE, &n->state);
    	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
    		msleep(1);
    	clear_bit(NAPI_STATE_DISABLE, &n->state);
    }
    
    /**
     *	napi_enable - enable NAPI scheduling
     *	@n: napi context
     *
     * Resume NAPI from being scheduled on this context.
     * Must be paired with napi_disable.
     */
    static inline void napi_enable(struct napi_struct *n)
    {
    	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
    	smp_mb__before_clear_bit();
    	clear_bit(NAPI_STATE_SCHED, &n->state);
    }
    
    #ifdef CONFIG_SMP
    /**
     *	napi_synchronize - wait until NAPI is not running
     *	@n: napi context
     *
     * Wait until NAPI is done being scheduled on this context.
     * Waits till any outstanding processing completes but
     * does not disable future activations.
     */
    static inline void napi_synchronize(const struct napi_struct *n)
    {
    	while (test_bit(NAPI_STATE_SCHED, &n->state))
    		msleep(1);
    }
    #else
    # define napi_synchronize(n)	barrier()
    #endif
    
    enum netdev_queue_state_t {
    	__QUEUE_STATE_XOFF,
    	__QUEUE_STATE_FROZEN,
    };
    
    struct netdev_queue {
    /*
     * read mostly part
     */
    	struct net_device	*dev;
    	struct Qdisc		*qdisc;
    	unsigned long		state;
    	struct Qdisc		*qdisc_sleeping;
    /*
     * write mostly part
     */
    	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
    	int			xmit_lock_owner;
    	/*
    	 * please use this field instead of dev->trans_start
    	 */
    	unsigned long		trans_start;
    	u64			tx_bytes;
    	u64			tx_packets;
    	u64			tx_dropped;
    } ____cacheline_aligned_in_smp;
    
    #ifdef CONFIG_RPS
    /*
     * This structure holds an RPS map which can be of variable length.  The
     * map is an array of CPUs.
     */
    struct rps_map {
    	unsigned int len;
    	struct rcu_head rcu;
    	u16 cpus[0];
    };
    #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
    
    /*
     * The rps_dev_flow structure contains the mapping of a flow to a CPU and the
     * tail pointer for that CPU's input queue at the time of last enqueue.
     */
    struct rps_dev_flow {
    	u16 cpu;
    	u16 fill;
    	unsigned int last_qtail;
    };
    
    /*
     * The rps_dev_flow_table structure contains a table of flow mappings.
     */
    struct rps_dev_flow_table {
    	unsigned int mask;
    	struct rcu_head rcu;
    	struct work_struct free_work;
    	struct rps_dev_flow flows[0];
    };
    #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
        (_num * sizeof(struct rps_dev_flow)))
    
    /*
     * The rps_sock_flow_table contains mappings of flows to the last CPU
     * on which they were processed by the application (set in recvmsg).
     */
    struct rps_sock_flow_table {
    	unsigned int mask;
    	u16 ents[0];
    };
    #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
        (_num * sizeof(u16)))
    
    #define RPS_NO_CPU 0xffff
    
    static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
    					u32 hash)
    {
    	if (table && hash) {
    		unsigned int cpu, index = hash & table->mask;
    
    		/* We only give a hint, preemption can change cpu under us */
    		cpu = raw_smp_processor_id();
    
    		if (table->ents[index] != cpu)
    			table->ents[index] = cpu;
    	}
    }
    
    static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
    				       u32 hash)
    {
    	if (table && hash)
    		table->ents[hash & table->mask] = RPS_NO_CPU;
    }
    
    extern struct rps_sock_flow_table *rps_sock_flow_table;
    
    /* This structure contains an instance of an RX queue. */
    struct netdev_rx_queue {
    	struct rps_map *rps_map;
    	struct rps_dev_flow_table *rps_flow_table;
    	struct kobject kobj;
    	struct netdev_rx_queue *first;
    	atomic_t count;
    } ____cacheline_aligned_in_smp;
    #endif /* CONFIG_RPS */
    
    /*
     * This structure defines the management hooks for network devices.
     * The following hooks can be defined; unless noted otherwise, they are
     * optional and can be filled with a null pointer.
     *
     * int (*ndo_init)(struct net_device *dev);
     *     This function is called once when network device is registered.
     *     The network device can use this to any late stage initializaton
     *     or semantic validattion. It can fail with an error code which will
     *     be propogated back to register_netdev
     *
     * void (*ndo_uninit)(struct net_device *dev);
     *     This function is called when device is unregistered or when registration
     *     fails. It is not called if init fails.
     *
     * int (*ndo_open)(struct net_device *dev);
     *     This function is called when network device transistions to the up
     *     state.
     *
     * int (*ndo_stop)(struct net_device *dev);
     *     This function is called when network device transistions to the down
     *     state.
     *
     * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
     *                               struct net_device *dev);
     *	Called when a packet needs to be transmitted.
     *	Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
     *        (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
     *	Required can not be NULL.
     *
     * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
     *	Called to decide which queue to when device supports multiple
     *	transmit queues.
     *
     * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
     *	This function is called to allow device receiver to make
     *	changes to configuration when multicast or promiscious is enabled.
     *
     * void (*ndo_set_rx_mode)(struct net_device *dev);
     *	This function is called device changes address list filtering.
     *
     * void (*ndo_set_multicast_list)(struct net_device *dev);
     *	This function is called when the multicast address list changes.
     *
     * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
     *	This function  is called when the Media Access Control address
     *	needs to be changed. If this interface is not defined, the
     *	mac address can not be changed.
     *
     * int (*ndo_validate_addr)(struct net_device *dev);
     *	Test if Media Access Control address is valid for the device.
     *
     * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
     *	Called when a user request an ioctl which can't be handled by
     *	the generic interface code. If not defined ioctl's return
     *	not supported error code.
     *
     * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
     *	Used to set network devices bus interface parameters. This interface
     *	is retained for legacy reason, new devices should use the bus
     *	interface (PCI) for low level management.
     *
     * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
     *	Called when a user wants to change the Maximum Transfer Unit
     *	of a device. If not defined, any request to change MTU will
     *	will return an error.
     *
     * void (*ndo_tx_timeout)(struct net_device *dev);
     *	Callback uses when the transmitter has not made any progress
     *	for dev->watchdog ticks.
     *
     * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
     *                      struct rtnl_link_stats64 *storage);
     * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
     *	Called when a user wants to get the network device usage
     *	statistics. Drivers must do one of the following:
     *	1. Define @ndo_get_stats64 to fill in a zero-initialised
     *	   rtnl_link_stats64 structure passed by the caller.
     *	2. Define @ndo_get_stats to update a net_device_stats structure
     *	   (which should normally be dev->stats) and return a pointer to
     *	   it. The structure may be changed asynchronously only if each
     *	   field is written atomically.
     *	3. Update dev->stats asynchronously and atomically, and define
     *	   neither operation.
     *
     * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
     *	If device support VLAN receive accleration
     *	(ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
     *	when vlan groups for the device changes.  Note: grp is NULL
     *	if no vlan's groups are being used.
     *
     * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
     *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
     *	this function is called when a VLAN id is registered.
     *
     * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
     *	If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
     *	this function is called when a VLAN id is unregistered.
     *
     * void (*ndo_poll_controller)(struct net_device *dev);
     *
     *	SR-IOV management functions.
     * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
     * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
     * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
     * int (*ndo_get_vf_config)(struct net_device *dev,
     *			    int vf, struct ifla_vf_info *ivf);
     * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
     *			  struct nlattr *port[]);
     * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
     */
    #define HAVE_NET_DEVICE_OPS
    struct net_device_ops {
    	int			(*ndo_init)(struct net_device *dev);
    	void			(*ndo_uninit)(struct net_device *dev);
    	int			(*ndo_open)(struct net_device *dev);
    	int			(*ndo_stop)(struct net_device *dev);
    	netdev_tx_t		(*ndo_start_xmit) (struct sk_buff *skb,
    						   struct net_device *dev);
    	u16			(*ndo_select_queue)(struct net_device *dev,
    						    struct sk_buff *skb);
    	void			(*ndo_change_rx_flags)(struct net_device *dev,
    						       int flags);
    	void			(*ndo_set_rx_mode)(struct net_device *dev);
    	void			(*ndo_set_multicast_list)(struct net_device *dev);
    	int			(*ndo_set_mac_address)(struct net_device *dev,
    						       void *addr);
    	int			(*ndo_validate_addr)(struct net_device *dev);
    	int			(*ndo_do_ioctl)(struct net_device *dev,
    					        struct ifreq *ifr, int cmd);
    	int			(*ndo_set_config)(struct net_device *dev,
    					          struct ifmap *map);
    	int			(*ndo_change_mtu)(struct net_device *dev,
    						  int new_mtu);
    	int			(*ndo_neigh_setup)(struct net_device *dev,
    						   struct neigh_parms *);
    	void			(*ndo_tx_timeout) (struct net_device *dev);
    
    	struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
    						     struct rtnl_link_stats64 *storage);
    	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
    
    	void			(*ndo_vlan_rx_register)(struct net_device *dev,
    						        struct vlan_group *grp);
    	void			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
    						       unsigned short vid);
    	void			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
    						        unsigned short vid);
    #ifdef CONFIG_NET_POLL_CONTROLLER
    	void                    (*ndo_poll_controller)(struct net_device *dev);
    	int			(*ndo_netpoll_setup)(struct net_device *dev,
    						     struct netpoll_info *info);
    	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
    #endif
    	int			(*ndo_set_vf_mac)(struct net_device *dev,
    						  int queue, u8 *mac);
    	int			(*ndo_set_vf_vlan)(struct net_device *dev,
    						   int queue, u16 vlan, u8 qos);
    	int			(*ndo_set_vf_tx_rate)(struct net_device *dev,
    						      int vf, int rate);
    	int			(*ndo_get_vf_config)(struct net_device *dev,
    						     int vf,
    						     struct ifla_vf_info *ivf);
    	int			(*ndo_set_vf_port)(struct net_device *dev,
    						   int vf,
    						   struct nlattr *port[]);
    	int			(*ndo_get_vf_port)(struct net_device *dev,
    						   int vf, struct sk_buff *skb);
    #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
    	int			(*ndo_fcoe_enable)(struct net_device *dev);
    	int			(*ndo_fcoe_disable)(struct net_device *dev);
    	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
    						      u16 xid,
    						      struct scatterlist *sgl,
    						      unsigned int sgc);
    	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
    						     u16 xid);
    #define NETDEV_FCOE_WWNN 0
    #define NETDEV_FCOE_WWPN 1
    	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
    						    u64 *wwn, int type);
    #endif
    };
    
    /*
     *	The DEVICE structure.
     *	Actually, this whole structure is a big mistake.  It mixes I/O
     *	data with strictly "high-level" data, and it has to know about
     *	almost every data structure used in the INET module.
     *
     *	FIXME: cleanup struct net_device such that network protocol info
     *	moves out.
     */
    
    struct net_device {
    
    	/*
    	 * This is the first field of the "visible" part of this structure
    	 * (i.e. as seen by users in the "Space.c" file).  It is the name
    	 * of the interface.
    	 */
    	char			name[IFNAMSIZ];
    
    	struct pm_qos_request_list pm_qos_req;
    
    	/* device name hash chain */
    	struct hlist_node	name_hlist;
    	/* snmp alias */
    	char 			*ifalias;
    
    	/*
    	 *	I/O specific fields
    	 *	FIXME: Merge these and struct ifmap into one
    	 */
    	unsigned long		mem_end;	/* shared mem end	*/
    	unsigned long		mem_start;	/* shared mem start	*/
    	unsigned long		base_addr;	/* device I/O address	*/
    	unsigned int		irq;		/* device IRQ number	*/
    
    	/*
    	 *	Some hardware also needs these fields, but they are not
    	 *	part of the usual set specified in Space.c.
    	 */
    
    	unsigned char		if_port;	/* Selectable AUI, TP,..*/
    	unsigned char		dma;		/* DMA channel		*/
    
    	unsigned long		state;
    
    	struct list_head	dev_list;
    	struct list_head	napi_list;
    	struct list_head	unreg_list;
    
    	/* Net device features */
    	unsigned long		features;
    #define NETIF_F_SG		1	/* Scatter/gather IO. */
    #define NETIF_F_IP_CSUM		2	/* Can checksum TCP/UDP over IPv4. */
    #define NETIF_F_NO_CSUM		4	/* Does not require checksum. F.e. loopack. */
    #define NETIF_F_HW_CSUM		8	/* Can checksum all the packets. */
    #define NETIF_F_IPV6_CSUM	16	/* Can checksum TCP/UDP over IPV6 */
    #define NETIF_F_HIGHDMA		32	/* Can DMA to high memory. */
    #define NETIF_F_FRAGLIST	64	/* Scatter/gather IO. */
    #define NETIF_F_HW_VLAN_TX	128	/* Transmit VLAN hw acceleration */
    #define NETIF_F_HW_VLAN_RX	256	/* Receive VLAN hw acceleration */
    #define NETIF_F_HW_VLAN_FILTER	512	/* Receive filtering on VLAN */
    #define NETIF_F_VLAN_CHALLENGED	1024	/* Device cannot handle VLAN packets */
    #define NETIF_F_GSO		2048	/* Enable software GSO. */
    #define NETIF_F_LLTX		4096	/* LockLess TX - deprecated. Please */
    					/* do not use LLTX in new drivers */
    #define NETIF_F_NETNS_LOCAL	8192	/* Does not change network namespaces */
    #define NETIF_F_GRO		16384	/* Generic receive offload */
    #define NETIF_F_LRO		32768	/* large receive offload */
    
    /* the GSO_MASK reserves bits 16 through 23 */
    #define NETIF_F_FCOE_CRC	(1 << 24) /* FCoE CRC32 */
    #define NETIF_F_SCTP_CSUM	(1 << 25) /* SCTP checksum offload */
    #define NETIF_F_FCOE_MTU	(1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
    #define NETIF_F_NTUPLE		(1 << 27) /* N-tuple filters supported */
    #define NETIF_F_RXHASH		(1 << 28) /* Receive hashing offload */
    
    	/* Segmentation offload features */
    #define NETIF_F_GSO_SHIFT	16
    #define NETIF_F_GSO_MASK	0x00ff0000
    #define NETIF_F_TSO		(SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
    #define NETIF_F_UFO		(SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
    #define NETIF_F_GSO_ROBUST	(SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
    #define NETIF_F_TSO_ECN		(SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
    #define NETIF_F_TSO6		(SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
    #define NETIF_F_FSO		(SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
    
    	/* List of features with software fallbacks. */
    #define NETIF_F_GSO_SOFTWARE	(NETIF_F_TSO | NETIF_F_TSO_ECN | \
    				 NETIF_F_TSO6 | NETIF_F_UFO)
    
    
    #define NETIF_F_GEN_CSUM	(NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
    #define NETIF_F_V4_CSUM		(NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
    #define NETIF_F_V6_CSUM		(NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
    #define NETIF_F_ALL_CSUM	(NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
    
    	/*
    	 * If one device supports one of these features, then enable them
    	 * for all in netdev_increment_features.
    	 */
    #define NETIF_F_ONE_FOR_ALL	(NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
    				 NETIF_F_SG | NETIF_F_HIGHDMA |		\
    				 NETIF_F_FRAGLIST)
    
    	/* Interface index. Unique device identifier	*/
    	int			ifindex;
    	int			iflink;
    
    	struct net_device_stats	stats;
    	atomic_long_t		rx_dropped; /* dropped packets by core network
    					     * Do not use this in drivers.
    					     */
    
    #ifdef CONFIG_WIRELESS_EXT
    	/* List of functions to handle Wireless Extensions (instead of ioctl).
    	 * See <net/iw_handler.h> for details. Jean II */
    	const struct iw_handler_def *	wireless_handlers;
    	/* Instance data managed by the core of Wireless Extensions. */
    	struct iw_public_data *	wireless_data;
    #endif
    	/* Management operations */
    	const struct net_device_ops *netdev_ops;
    	const struct ethtool_ops *ethtool_ops;
    
    	/* Hardware header description */
    	const struct header_ops *header_ops;
    
    	unsigned int		flags;	/* interface flags (a la BSD)	*/
    	unsigned short		gflags;
            unsigned int            priv_flags; /* Like 'flags' but invisible to userspace. */
    	unsigned short		padded;	/* How much padding added by alloc_netdev() */
    
    	unsigned char		operstate; /* RFC2863 operstate */
    	unsigned char		link_mode; /* mapping policy to operstate */
    
    	unsigned int		mtu;	/* interface MTU value		*/
    	unsigned short		type;	/* interface hardware type	*/
    	unsigned short		hard_header_len;	/* hardware hdr length	*/
    
    	/* extra head- and tailroom the hardware may need, but not in all cases
    	 * can this be guaranteed, especially tailroom. Some cases also use
    	 * LL_MAX_HEADER instead to allocate the skb.
    	 */
    	unsigned short		needed_headroom;
    	unsigned short		needed_tailroom;
    
    	/* Interface address info. */
    	unsigned char		perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
    	unsigned char		addr_assign_type; /* hw address assignment type */
    	unsigned char		addr_len;	/* hardware address length	*/
    	unsigned short          dev_id;		/* for shared network cards */
    
    	spinlock_t		addr_list_lock;
    	struct netdev_hw_addr_list	uc;	/* Unicast mac addresses */
    	struct netdev_hw_addr_list	mc;	/* Multicast mac addresses */
    	int			uc_promisc;
    	unsigned int		promiscuity;
    	unsigned int		allmulti;
    
    
    	/* Protocol specific pointers */
    
    #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
    	struct vlan_group	*vlgrp;		/* VLAN group */
    #endif
    #ifdef CONFIG_NET_DSA
    	void			*dsa_ptr;	/* dsa specific data */
    #endif
    	void 			*atalk_ptr;	/* AppleTalk link 	*/
    	struct in_device __rcu	*ip_ptr;	/* IPv4 specific data	*/
    	void                    *dn_ptr;        /* DECnet specific data */
    	void                    *ip6_ptr;       /* IPv6 specific data */
    	void			*ec_ptr;	/* Econet specific data	*/
    	void			*ax25_ptr;	/* AX.25 specific data */
    	struct wireless_dev	*ieee80211_ptr;	/* IEEE 802.11 specific data,
    						   assign before registering */
    
    /*
     * Cache lines mostly used on receive path (including eth_type_trans())
     */
    	unsigned long		last_rx;	/* Time of last Rx
    						 * This should not be set in
    						 * drivers, unless really needed,
    						 * because network stack (bonding)
    						 * use it if/when necessary, to
    						 * avoid dirtying this cache line.
    						 */
    
    	struct net_device	*master; /* Pointer to master device of a group,
    					  * which this device is member of.
    					  */
    
    	/* Interface address info used in eth_type_trans() */
    	unsigned char		*dev_addr;	/* hw address, (before bcast
    						   because most packets are
    						   unicast) */
    
    	struct netdev_hw_addr_list	dev_addrs; /* list of device
    						      hw addresses */
    
    	unsigned char		broadcast[MAX_ADDR_LEN];	/* hw bcast add	*/
    
    #ifdef CONFIG_RPS
    	struct kset		*queues_kset;
    
    	struct netdev_rx_queue	*_rx;
    
    	/* Number of RX queues allocated at register_netdev() time */
    	unsigned int		num_rx_queues;
    
    	/* Number of RX queues currently active in device */
    	unsigned int		real_num_rx_queues;
    #endif
    
    	rx_handler_func_t	*rx_handler;
    	void			*rx_handler_data;
    
    	struct netdev_queue __rcu *ingress_queue;
    
    /*
     * Cache lines mostly used on transmit path
     */
    	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
    
    	/* Number of TX queues allocated at alloc_netdev_mq() time  */
    	unsigned int		num_tx_queues;
    
    	/* Number of TX queues currently active in device  */
    	unsigned int		real_num_tx_queues;
    
    	/* root qdisc from userspace point of view */
    	struct Qdisc		*qdisc;
    
    	unsigned long		tx_queue_len;	/* Max frames per queue allowed */
    	spinlock_t		tx_global_lock;
    
    	/* These may be needed for future network-power-down code. */
    
    	/*
    	 * trans_start here is expensive for high speed devices on SMP,
    	 * please use netdev_queue->trans_start instead.
    	 */
    	unsigned long		trans_start;	/* Time (in jiffies) of last Tx	*/
    
    	int			watchdog_timeo; /* used by dev_watchdog() */
    	struct timer_list	watchdog_timer;
    
    	/* Number of references to this device */
    	int __percpu		*pcpu_refcnt;
    
    	/* delayed register/unregister */
    	struct list_head	todo_list;
    	/* device index hash chain */
    	struct hlist_node	index_hlist;
    
    	struct list_head	link_watch_list;
    
    	/* register/unregister state machine */
    	enum { NETREG_UNINITIALIZED=0,
    	       NETREG_REGISTERED,	/* completed register_netdevice */
    	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
    	       NETREG_UNREGISTERED,	/* completed unregister todo */
    	       NETREG_RELEASED,		/* called free_netdev */
    	       NETREG_DUMMY,		/* dummy device for NAPI poll */
    	} reg_state:16;
    
    	enum {
    		RTNL_LINK_INITIALIZED,
    		RTNL_LINK_INITIALIZING,
    	} rtnl_link_state:16;
    
    	/* Called from unregister, can be used to call free_netdev */
    	void (*destructor)(struct net_device *dev);
    
    #ifdef CONFIG_NETPOLL
    	struct netpoll_info	*npinfo;
    #endif
    
    #ifdef CONFIG_NET_NS
    	/* Network namespace this network device is inside */
    	struct net		*nd_net;
    #endif
    
    	/* mid-layer private */
    	union {
    		void				*ml_priv;
    		struct pcpu_lstats __percpu	*lstats; /* loopback stats */
    		struct pcpu_tstats __percpu	*tstats; /* tunnel stats */
    		struct pcpu_dstats __percpu	*dstats; /* dummy stats */
    	};
    	/* GARP */
    	struct garp_port	*garp_port;
    
    	/* class/net/name entry */
    	struct device		dev;
    	/* space for optional device, statistics, and wireless sysfs groups */
    	const struct attribute_group *sysfs_groups[4];
    
    	/* rtnetlink link ops */
    	const struct rtnl_link_ops *rtnl_link_ops;
    
    	/* VLAN feature mask */
    	unsigned long vlan_features;
    
    	/* for setting kernel sock attribute on TCP connection setup */
    #define GSO_MAX_SIZE		65536
    	unsigned int		gso_max_size;
    
    #ifdef CONFIG_DCB
    	/* Data Center Bridging netlink ops */
    	const struct dcbnl_rtnl_ops *dcbnl_ops;
    #endif
    
    #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
    	/* max exchange id for FCoE LRO by ddp */
    	unsigned int		fcoe_ddp_xid;
    #endif
    	/* n-tuple filter list attached to this device */
    	struct ethtool_rx_ntuple_list ethtool_ntuple_list;
    
    	/* phy device may attach itself for hardware timestamping */
    	struct phy_device *phydev;
    };
    #define to_net_dev(d) container_of(d, struct net_device, dev)
    
    #define	NETDEV_ALIGN		32
    
    static inline
    struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
    					 unsigned int index)
    {
    	return &dev->_tx[index];
    }
    
    static inline void netdev_for_each_tx_queue(struct net_device *dev,
    					    void (*f)(struct net_device *,
    						      struct netdev_queue *,
    						      void *),
    					    void *arg)
    {
    	unsigned int i;
    
    	for (i = 0; i < dev->num_tx_queues; i++)
    		f(dev, &dev->_tx[i], arg);
    }
    
    /*
     * Net namespace inlines
     */
    static inline
    struct net *dev_net(const struct net_device *dev)
    {
    	return read_pnet(&dev->nd_net);
    }
    
    static inline
    void dev_net_set(struct net_device *dev, struct net *net)
    {
    #ifdef CONFIG_NET_NS
    	release_net(dev->nd_net);
    	dev->nd_net = hold_net(net);
    #endif
    }
    
    static inline bool netdev_uses_dsa_tags(struct net_device *dev)
    {
    #ifdef CONFIG_NET_DSA_TAG_DSA
    	if (dev->dsa_ptr != NULL)
    		return dsa_uses_dsa_tags(dev->dsa_ptr);
    #endif
    
    	return 0;
    }
    
    #ifndef CONFIG_NET_NS
    static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
    {
    	skb->dev = dev;
    }
    #else /* CONFIG_NET_NS */
    void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
    #endif
    
    static inline bool netdev_uses_trailer_tags(struct net_device *dev)
    {
    #ifdef CONFIG_NET_DSA_TAG_TRAILER
    	if (dev->dsa_ptr != NULL)
    		return dsa_uses_trailer_tags(dev->dsa_ptr);
    #endif
    
    	return 0;
    }
    
    /**
     *	netdev_priv - access network device private data
     *	@dev: network device
     *
     * Get network device private data
     */
    static inline void *netdev_priv(const struct net_device *dev)
    {
    	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
    }
    
    /* Set the sysfs physical device reference for the network logical device
     * if set prior to registration will cause a symlink during initialization.
     */
    #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
    
    /* Set the sysfs device type for the network logical device to allow
     * fin grained indentification of different network device types. For
     * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
     */
    #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
    
    /**
     *	netif_napi_add - initialize a napi context
     *	@dev:  network device
     *	@napi: napi context
     *	@poll: polling function
     *	@weight: default weight
     *
     * netif_napi_add() must be used to initialize a napi context prior to calling
     * *any* of the other napi related functions.
     */
    void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
    		    int (*poll)(struct napi_struct *, int), int weight);
    
    /**
     *  netif_napi_del - remove a napi context
     *  @napi: napi context
     *
     *  netif_napi_del() removes a napi context from the network device napi list
     */
    void netif_napi_del(struct napi_struct *napi);
    
    struct napi_gro_cb {
    	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
    	void *frag0;
    
    	/* Length of frag0. */
    	unsigned int frag0_len;
    
    	/* This indicates where we are processing relative to skb->data. */
    	int data_offset;
    
    	/* This is non-zero if the packet may be of the same flow. */
    	int same_flow;
    
    	/* This is non-zero if the packet cannot be merged with the new skb. */
    	int flush;
    
    	/* Number of segments aggregated. */
    	int count;
    
    	/* Free the skb? */
    	int free;
    };
    
    #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
    
    struct packet_type {
    	__be16			type;	/* This is really htons(ether_type). */
    	struct net_device	*dev;	/* NULL is wildcarded here	     */
    	int			(*func) (struct sk_buff *,
    					 struct net_device *,
    					 struct packet_type *,
    					 struct net_device *);
    	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
    						int features);
    	int			(*gso_send_check)(struct sk_buff *skb);
    	struct sk_buff		**(*gro_receive)(struct sk_buff **head,
    					       struct sk_buff *skb);
    	int			(*gro_complete)(struct sk_buff *skb);
    	void			*af_packet_priv;
    	struct list_head	list;
    };
    
    #include <linux/interrupt.h>
    #include <linux/notifier.h>
    
    extern rwlock_t				dev_base_lock;		/* Device list lock */
    
    
    #define for_each_netdev(net, d)		\
    		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
    #define for_each_netdev_reverse(net, d)	\
    		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
    #define for_each_netdev_rcu(net, d)		\
    		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
    #define for_each_netdev_safe(net, d, n)	\
    		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
    #define for_each_netdev_continue(net, d)		\
    		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
    #define for_each_netdev_continue_rcu(net, d)		\
    	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
    #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
    
    static inline struct net_device *next_net_device(struct net_device *dev)
    {
    	struct list_head *lh;
    	struct net *net;
    
    	net = dev_net(dev);
    	lh = dev->dev_list.next;
    	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
    }
    
    static inline struct net_device *next_net_device_rcu(struct net_device *dev)
    {
    	struct list_head *lh;
    	struct net *net;
    
    	net = dev_net(dev);
    	lh = rcu_dereference(dev->dev_list.next);
    	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
    }
    
    static inline struct net_device *first_net_device(struct net *net)
    {
    	return list_empty(&net->dev_base_head) ? NULL :
    		net_device_entry(net->dev_base_head.next);
    }
    
    extern int 			netdev_boot_setup_check(struct net_device *dev);
    extern unsigned long		netdev_boot_base(const char *prefix, int unit);
    extern struct net_device    *dev_getbyhwaddr(struct net *net, unsigned short type, char *hwaddr);
    extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
    extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
    extern void		dev_add_pack(struct packet_type *pt);
    extern void		dev_remove_pack(struct packet_type *pt);
    extern void		__dev_remove_pack(struct packet_type *pt);
    
    extern struct net_device	*dev_get_by_flags_rcu(struct net *net, unsigned short flags,
    						      unsigned short mask);
    extern struct net_device	*dev_get_by_name(struct net *net, const char *name);
    extern struct net_device	*dev_get_by_name_rcu(struct net *net, const char *name);
    extern struct net_device	*__dev_get_by_name(struct net *net, const char *name);
    extern int		dev_alloc_name(struct net_device *dev, const char *name);
    extern int		dev_open(struct net_device *dev);
    extern int		dev_close(struct net_device *dev);
    extern void		dev_disable_lro(struct net_device *dev);
    extern int		dev_queue_xmit(struct sk_buff *skb);
    extern int		register_netdevice(struct net_device *dev);
    extern void		unregister_netdevice_queue(struct net_device *dev,
    						   struct list_head *head);
    extern void		unregister_netdevice_many(struct list_head *head);
    static inline void unregister_netdevice(struct net_device *dev)
    {
    	unregister_netdevice_queue(dev, NULL);
    }
    
    extern int 		netdev_refcnt_read(const struct net_device *dev);
    extern void		free_netdev(struct net_device *dev);
    extern void		synchronize_net(void);
    extern int 		register_netdevice_notifier(struct notifier_block *nb);
    extern int		unregister_netdevice_notifier(struct notifier_block *nb);
    extern int		init_dummy_netdev(struct net_device *dev);
    extern void		netdev_resync_ops(struct net_device *dev);
    
    extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
    extern struct net_device	*dev_get_by_index(struct net *net, int ifindex);
    extern struct net_device	*__dev_get_by_index(struct net *net, int ifindex);
    extern struct net_device	*dev_get_by_index_rcu(struct net *net, int ifindex);
    extern int		dev_restart(struct net_device *dev);
    #ifdef CONFIG_NETPOLL_TRAP
    extern int		netpoll_trap(void);
    #endif
    extern int	       skb_gro_receive(struct sk_buff **head,
    				       struct sk_buff *skb);
    extern void	       skb_gro_reset_offset(struct sk_buff *skb);
    
    static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
    {
    	return NAPI_GRO_CB(skb)->data_offset;
    }
    
    static inline unsigned int skb_gro_len(const struct sk_buff *skb)
    {
    	return skb->len - NAPI_GRO_CB(skb)->data_offset;
    }
    
    static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
    {
    	NAPI_GRO_CB(skb)->data_offset += len;
    }
    
    static inline void *skb_gro_header_fast(struct sk_buff *skb,
    					unsigned int offset)
    {
    	return NAPI_GRO_CB(skb)->frag0 + offset;
    }
    
    static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
    {
    	return NAPI_GRO_CB(skb)->frag0_len < hlen;
    }
    
    static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
    					unsigned int offset)
    {
    	NAPI_GRO_CB(skb)->frag0 = NULL;
    	NAPI_GRO_CB(skb)->frag0_len = 0;
    	return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
    }
    
    static inline void *skb_gro_mac_header(struct sk_buff *skb)
    {
    	return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
    }
    
    static inline void *skb_gro_network_header(struct sk_buff *skb)
    {
    	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
    	       skb_network_offset(skb);
    }
    
    static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
    				  unsigned short type,
    				  const void *daddr, const void *saddr,
    				  unsigned len)
    {
    	if (!dev->header_ops || !dev->header_ops->create)
    		return 0;
    
    	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
    }
    
    static inline int dev_parse_header(const struct sk_buff *skb,
    				   unsigned char *haddr)
    {
    	const struct net_device *dev = skb->dev;
    
    	if (!dev->header_ops || !dev->header_ops->parse)
    		return 0;
    	return dev->header_ops->parse(skb, haddr);
    }
    
    typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
    extern int		register_gifconf(unsigned int family, gifconf_func_t * gifconf);
    static inline int unregister_gifconf(unsigned int family)
    {
    	return register_gifconf(family, NULL);
    }
    
    /*
     * Incoming packets are placed on per-cpu queues
     */
    struct softnet_data {
    	struct Qdisc		*output_queue;
    	struct Qdisc		**output_queue_tailp;
    	struct list_head	poll_list;
    	struct sk_buff		*completion_queue;
    	struct sk_buff_head	process_queue;
    
    	/* stats */
    	unsigned int		processed;
    	unsigned int		time_squeeze;
    	unsigned int		cpu_collision;
    	unsigned int		received_rps;
    
    #ifdef CONFIG_RPS
    	struct softnet_data	*rps_ipi_list;
    
    	/* Elements below can be accessed between CPUs for RPS */
    	struct call_single_data	csd ____cacheline_aligned_in_smp;
    	struct softnet_data	*rps_ipi_next;
    	unsigned int		cpu;
    	unsigned int		input_queue_head;
    	unsigned int		input_queue_tail;
    #endif
    	unsigned		dropped;
    	struct sk_buff_head	input_pkt_queue;
    	struct napi_struct	backlog;
    };
    
    static inline void input_queue_head_incr(struct softnet_data *sd)
    {
    #ifdef CONFIG_RPS
    	sd->input_queue_head++;
    #endif
    }
    
    static inline void input_queue_tail_incr_save(struct softnet_data *sd,
    					      unsigned int *qtail)
    {
    #ifdef CONFIG_RPS
    	*qtail = ++sd->input_queue_tail;
    #endif
    }
    
    DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
    
    #define HAVE_NETIF_QUEUE
    
    extern void __netif_schedule(struct Qdisc *q);
    
    static inline void netif_schedule_queue(struct netdev_queue *txq)
    {
    	if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
    		__netif_schedule(txq->qdisc);
    }
    
    static inline void netif_tx_schedule_all(struct net_device *dev)
    {
    	unsigned int i;
    
    	for (i = 0; i < dev->num_tx_queues; i++)
    		netif_schedule_queue(netdev_get_tx_queue(dev, i));
    }
    
    static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
    {
    	clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
    }
    
    /**
     *	netif_start_queue - allow transmit
     *	@dev: network device
     *
     *	Allow upper layers to call the device hard_start_xmit routine.
     */
    static inline void netif_start_queue(struct net_device *dev)
    {
    	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
    }
    
    static inline void netif_tx_start_all_queues(struct net_device *dev)
    {
    	unsigned int i;
    
    	for (i = 0; i < dev->num_tx_queues; i++) {
    		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
    		netif_tx_start_queue(txq);
    	}
    }
    
    static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
    {
    #ifdef CONFIG_NETPOLL_TRAP
    	if (netpoll_trap()) {
    		netif_tx_start_queue(dev_queue);
    		return;
    	}
    #endif
    	if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
    		__netif_schedule(dev_queue->qdisc);
    }
    
    /**
     *	netif_wake_queue - restart transmit
     *	@dev: network device
     *
     *	Allow upper layers to call the device hard_start_xmit routine.
     *	Used for flow control when transmit resources are available.
     */
    static inline void netif_wake_queue(struct net_device *dev)
    {
    	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
    }
    
    static inline void netif_tx_wake_all_queues(struct net_device *dev)
    {
    	unsigned int i;
    
    	for (i = 0; i < dev->num_tx_queues; i++) {
    		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
    		netif_tx_wake_queue(txq);
    	}
    }
    
    static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
    {
    	set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
    }
    
    /**
     *	netif_stop_queue - stop transmitted packets
     *	@dev: network device
     *
     *	Stop upper layers calling the device hard_start_xmit routine.
     *	Used for flow control when transmit resources are unavailable.
     */
    static inline void netif_stop_queue(struct net_device *dev)
    {
    	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
    }
    
    static inline void netif_tx_stop_all_queues(struct net_device *dev)
    {
    	unsigned int i;
    
    	for (i = 0; i < dev->num_tx_queues; i++) {
    		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
    		netif_tx_stop_queue(txq);
    	}
    }
    
    static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
    {
    	return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
    }
    
    /**
     *	netif_queue_stopped - test if transmit queue is flowblocked
     *	@dev: network device
     *
     *	Test if transmit queue on device is currently unable to send.
     */
    static inline int netif_queue_stopped(const struct net_device *dev)
    {
    	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
    }
    
    static inline int netif_tx_queue_frozen(const struct netdev_queue *dev_queue)
    {
    	return test_bit(__QUEUE_STATE_FROZEN, &dev_queue->state);
    }
    
    /**
     *	netif_running - test if up
     *	@dev: network device
     *
     *	Test if the device has been brought up.
     */
    static inline int netif_running(const struct net_device *dev)
    {
    	return test_bit(__LINK_STATE_START, &dev->state);
    }
    
    /*
     * Routines to manage the subqueues on a device.  We only need start
     * stop, and a check if it's stopped.  All other device management is
     * done at the overall netdevice level.
     * Also test the device if we're multiqueue.
     */
    
    /**
     *	netif_start_subqueue - allow sending packets on subqueue
     *	@dev: network device
     *	@queue_index: sub queue index
     *
     * Start individual transmit queue of a device with multiple transmit queues.
     */
    static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
    {
    	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
    
    	netif_tx_start_queue(txq);
    }
    
    /**
     *	netif_stop_subqueue - stop sending packets on subqueue
     *	@dev: network device
     *	@queue_index: sub queue index
     *
     * Stop individual transmit queue of a device with multiple transmit queues.
     */
    static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
    {
    	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
    #ifdef CONFIG_NETPOLL_TRAP
    	if (netpoll_trap())
    		return;
    #endif
    	netif_tx_stop_queue(txq);
    }
    
    /**
     *	netif_subqueue_stopped - test status of subqueue
     *	@dev: network device
     *	@queue_index: sub queue index
     *
     * Check individual transmit queue of a device with multiple transmit queues.
     */
    static inline int __netif_subqueue_stopped(const struct net_device *dev,
    					 u16 queue_index)
    {
    	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
    
    	return netif_tx_queue_stopped(txq);
    }
    
    static inline int netif_subqueue_stopped(const struct net_device *dev,
    					 struct sk_buff *skb)
    {
    	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
    }
    
    /**
     *	netif_wake_subqueue - allow sending packets on subqueue
     *	@dev: network device
     *	@queue_index: sub queue index
     *
     * Resume individual transmit queue of a device with multiple transmit queues.
     */
    static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
    {
    	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
    #ifdef CONFIG_NETPOLL_TRAP
    	if (netpoll_trap())
    		return;
    #endif
    	if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
    		__netif_schedule(txq->qdisc);
    }
    
    /**
     *	netif_is_multiqueue - test if device has multiple transmit queues
     *	@dev: network device
     *
     * Check if device has multiple transmit queues
     */
    static inline int netif_is_multiqueue(const struct net_device *dev)
    {
    	return dev->num_tx_queues > 1;
    }
    
    extern int netif_set_real_num_tx_queues(struct net_device *dev,
    					unsigned int txq);
    
    #ifdef CONFIG_RPS
    extern int netif_set_real_num_rx_queues(struct net_device *dev,
    					unsigned int rxq);
    #else
    static inline int netif_set_real_num_rx_queues(struct net_device *dev,
    						unsigned int rxq)
    {
    	return 0;
    }
    #endif
    
    static inline int netif_copy_real_num_queues(struct net_device *to_dev,
    					     const struct net_device *from_dev)
    {
    	netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
    #ifdef CONFIG_RPS
    	return netif_set_real_num_rx_queues(to_dev,
    					    from_dev->real_num_rx_queues);
    #else
    	return 0;
    #endif
    }
    
    /* Use this variant when it is known for sure that it
     * is executing from hardware interrupt context or with hardware interrupts
     * disabled.
     */
    extern void dev_kfree_skb_irq(struct sk_buff *skb);
    
    /* Use this variant in places where it could be invoked
     * from either hardware interrupt or other context, with hardware interrupts
     * either disabled or enabled.
     */
    extern void dev_kfree_skb_any(struct sk_buff *skb);
    
    #define HAVE_NETIF_RX 1
    extern int		netif_rx(struct sk_buff *skb);
    extern int		netif_rx_ni(struct sk_buff *skb);
    #define HAVE_NETIF_RECEIVE_SKB 1
    extern int		netif_receive_skb(struct sk_buff *skb);
    extern gro_result_t	dev_gro_receive(struct napi_struct *napi,
    					struct sk_buff *skb);
    extern gro_result_t	napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
    extern gro_result_t	napi_gro_receive(struct napi_struct *napi,
    					 struct sk_buff *skb);
    extern void		napi_gro_flush(struct napi_struct *napi);
    extern void		napi_reuse_skb(struct napi_struct *napi,
    				       struct sk_buff *skb);
    extern struct sk_buff *	napi_get_frags(struct napi_struct *napi);
    extern gro_result_t	napi_frags_finish(struct napi_struct *napi,
    					  struct sk_buff *skb,
    					  gro_result_t ret);
    extern struct sk_buff *	napi_frags_skb(struct napi_struct *napi);
    extern gro_result_t	napi_gro_frags(struct napi_struct *napi);
    
    static inline void napi_free_frags(struct napi_struct *napi)
    {
    	kfree_skb(napi->skb);
    	napi->skb = NULL;
    }
    
    extern int netdev_rx_handler_register(struct net_device *dev,
    				      rx_handler_func_t *rx_handler,
    				      void *rx_handler_data);
    extern void netdev_rx_handler_unregister(struct net_device *dev);
    
    extern void		netif_nit_deliver(struct sk_buff *skb);
    extern int		dev_valid_name(const char *name);
    extern int		dev_ioctl(struct net *net, unsigned int cmd, void __user *);
    extern int		dev_ethtool(struct net *net, struct ifreq *);
    extern unsigned		dev_get_flags(const struct net_device *);
    extern int		__dev_change_flags(struct net_device *, unsigned int flags);
    extern int		dev_change_flags(struct net_device *, unsigned);
    extern void		__dev_notify_flags(struct net_device *, unsigned int old_flags);
    extern int		dev_change_name(struct net_device *, const char *);
    extern int		dev_set_alias(struct net_device *, const char *, size_t);
    extern int		dev_change_net_namespace(struct net_device *,
    						 struct net *, const char *);
    extern int		dev_set_mtu(struct net_device *, int);
    extern int		dev_set_mac_address(struct net_device *,
    					    struct sockaddr *);
    extern int		dev_hard_start_xmit(struct sk_buff *skb,
    					    struct net_device *dev,
    					    struct netdev_queue *txq);
    extern int		dev_forward_skb(struct net_device *dev,
    					struct sk_buff *skb);
    
    extern int		netdev_budget;
    
    /* Called by rtnetlink.c:rtnl_unlock() */
    extern void netdev_run_todo(void);
    
    /**
     *	dev_put - release reference to device
     *	@dev: network device
     *
     * Release reference to device to allow it to be freed.
     */
    static inline void dev_put(struct net_device *dev)
    {
    	irqsafe_cpu_dec(*dev->pcpu_refcnt);
    }
    
    /**
     *	dev_hold - get reference to device
     *	@dev: network device
     *
     * Hold reference to device to keep it from being freed.
     */
    static inline void dev_hold(struct net_device *dev)
    {
    	irqsafe_cpu_inc(*dev->pcpu_refcnt);
    }
    
    /* Carrier loss detection, dial on demand. The functions netif_carrier_on
     * and _off may be called from IRQ context, but it is caller
     * who is responsible for serialization of these calls.
     *
     * The name carrier is inappropriate, these functions should really be
     * called netif_lowerlayer_*() because they represent the state of any
     * kind of lower layer not just hardware media.
     */
    
    extern void linkwatch_fire_event(struct net_device *dev);
    extern void linkwatch_forget_dev(struct net_device *dev);
    
    /**
     *	netif_carrier_ok - test if carrier present
     *	@dev: network device
     *
     * Check if carrier is present on device
     */
    static inline int netif_carrier_ok(const struct net_device *dev)
    {
    	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
    }
    
    extern unsigned long dev_trans_start(struct net_device *dev);
    
    extern void __netdev_watchdog_up(struct net_device *dev);
    
    extern void netif_carrier_on(struct net_device *dev);
    
    extern void netif_carrier_off(struct net_device *dev);
    
    extern void netif_notify_peers(struct net_device *dev);
    
    /**
     *	netif_dormant_on - mark device as dormant.
     *	@dev: network device
     *
     * Mark device as dormant (as per RFC2863).
     *
     * The dormant state indicates that the relevant interface is not
     * actually in a condition to pass packets (i.e., it is not 'up') but is
     * in a "pending" state, waiting for some external event.  For "on-
     * demand" interfaces, this new state identifies the situation where the
     * interface is waiting for events to place it in the up state.
     *
     */
    static inline void netif_dormant_on(struct net_device *dev)
    {
    	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
    		linkwatch_fire_event(dev);
    }
    
    /**
     *	netif_dormant_off - set device as not dormant.
     *	@dev: network device
     *
     * Device is not in dormant state.
     */
    static inline void netif_dormant_off(struct net_device *dev)
    {
    	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
    		linkwatch_fire_event(dev);
    }
    
    /**
     *	netif_dormant - test if carrier present
     *	@dev: network device
     *
     * Check if carrier is present on device
     */
    static inline int netif_dormant(const struct net_device *dev)
    {
    	return test_bit(__LINK_STATE_DORMANT, &dev->state);
    }
    
    
    /**
     *	netif_oper_up - test if device is operational
     *	@dev: network device
     *
     * Check if carrier is operational
     */
    static inline int netif_oper_up(const struct net_device *dev)
    {
    	return (dev->operstate == IF_OPER_UP ||
    		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
    }
    
    /**
     *	netif_device_present - is device available or removed
     *	@dev: network device
     *
     * Check if device has not been removed from system.
     */
    static inline int netif_device_present(struct net_device *dev)
    {
    	return test_bit(__LINK_STATE_PRESENT, &dev->state);
    }
    
    extern void netif_device_detach(struct net_device *dev);
    
    extern void netif_device_attach(struct net_device *dev);
    
    /*
     * Network interface message level settings
     */
    #define HAVE_NETIF_MSG 1
    
    enum {
    	NETIF_MSG_DRV		= 0x0001,
    	NETIF_MSG_PROBE		= 0x0002,
    	NETIF_MSG_LINK		= 0x0004,
    	NETIF_MSG_TIMER		= 0x0008,
    	NETIF_MSG_IFDOWN	= 0x0010,
    	NETIF_MSG_IFUP		= 0x0020,
    	NETIF_MSG_RX_ERR	= 0x0040,
    	NETIF_MSG_TX_ERR	= 0x0080,
    	NETIF_MSG_TX_QUEUED	= 0x0100,
    	NETIF_MSG_INTR		= 0x0200,
    	NETIF_MSG_TX_DONE	= 0x0400,
    	NETIF_MSG_RX_STATUS	= 0x0800,
    	NETIF_MSG_PKTDATA	= 0x1000,
    	NETIF_MSG_HW		= 0x2000,
    	NETIF_MSG_WOL		= 0x4000,
    };
    
    #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
    #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
    #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
    #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
    #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
    #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
    #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
    #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
    #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
    #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
    #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
    #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
    #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
    #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
    #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
    
    static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
    {
    	/* use default */
    	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
    		return default_msg_enable_bits;
    	if (debug_value == 0)	/* no output */
    		return 0;
    	/* set low N bits */
    	return (1 << debug_value) - 1;
    }
    
    static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
    {
    	spin_lock(&txq->_xmit_lock);
    	txq->xmit_lock_owner = cpu;
    }
    
    static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
    {
    	spin_lock_bh(&txq->_xmit_lock);
    	txq->xmit_lock_owner = smp_processor_id();
    }
    
    static inline int __netif_tx_trylock(struct netdev_queue *txq)
    {
    	int ok = spin_trylock(&txq->_xmit_lock);
    	if (likely(ok))
    		txq->xmit_lock_owner = smp_processor_id();
    	return ok;
    }
    
    static inline void __netif_tx_unlock(struct netdev_queue *txq)
    {
    	txq->xmit_lock_owner = -1;
    	spin_unlock(&txq->_xmit_lock);
    }
    
    static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
    {
    	txq->xmit_lock_owner = -1;
    	spin_unlock_bh(&txq->_xmit_lock);
    }
    
    static inline void txq_trans_update(struct netdev_queue *txq)
    {
    	if (txq->xmit_lock_owner != -1)
    		txq->trans_start = jiffies;
    }
    
    /**
     *	netif_tx_lock - grab network device transmit lock
     *	@dev: network device
     *
     * Get network device transmit lock
     */
    static inline void netif_tx_lock(struct net_device *dev)
    {
    	unsigned int i;
    	int cpu;
    
    	spin_lock(&dev->tx_global_lock);
    	cpu = smp_processor_id();
    	for (i = 0; i < dev->num_tx_queues; i++) {
    		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
    
    		/* We are the only thread of execution doing a
    		 * freeze, but we have to grab the _xmit_lock in
    		 * order to synchronize with threads which are in
    		 * the ->hard_start_xmit() handler and already
    		 * checked the frozen bit.
    		 */
    		__netif_tx_lock(txq, cpu);
    		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
    		__netif_tx_unlock(txq);
    	}
    }
    
    static inline void netif_tx_lock_bh(struct net_device *dev)
    {
    	local_bh_disable();
    	netif_tx_lock(dev);
    }
    
    static inline void netif_tx_unlock(struct net_device *dev)
    {
    	unsigned int i;
    
    	for (i = 0; i < dev->num_tx_queues; i++) {
    		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
    
    		/* No need to grab the _xmit_lock here.  If the
    		 * queue is not stopped for another reason, we
    		 * force a schedule.
    		 */
    		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
    		netif_schedule_queue(txq);
    	}
    	spin_unlock(&dev->tx_global_lock);
    }
    
    static inline void netif_tx_unlock_bh(struct net_device *dev)
    {
    	netif_tx_unlock(dev);
    	local_bh_enable();
    }
    
    #define HARD_TX_LOCK(dev, txq, cpu) {			\
    	if ((dev->features & NETIF_F_LLTX) == 0) {	\
    		__netif_tx_lock(txq, cpu);		\
    	}						\
    }
    
    #define HARD_TX_UNLOCK(dev, txq) {			\
    	if ((dev->features & NETIF_F_LLTX) == 0) {	\
    		__netif_tx_unlock(txq);			\
    	}						\
    }
    
    static inline void netif_tx_disable(struct net_device *dev)
    {
    	unsigned int i;
    	int cpu;
    
    	local_bh_disable();
    	cpu = smp_processor_id();
    	for (i = 0; i < dev->num_tx_queues; i++) {
    		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
    
    		__netif_tx_lock(txq, cpu);
    		netif_tx_stop_queue(txq);
    		__netif_tx_unlock(txq);
    	}
    	local_bh_enable();
    }
    
    static inline void netif_addr_lock(struct net_device *dev)
    {
    	spin_lock(&dev->addr_list_lock);
    }
    
    static inline void netif_addr_lock_bh(struct net_device *dev)
    {
    	spin_lock_bh(&dev->addr_list_lock);
    }
    
    static inline void netif_addr_unlock(struct net_device *dev)
    {
    	spin_unlock(&dev->addr_list_lock);
    }
    
    static inline void netif_addr_unlock_bh(struct net_device *dev)
    {
    	spin_unlock_bh(&dev->addr_list_lock);
    }
    
    /*
     * dev_addrs walker. Should be used only for read access. Call with
     * rcu_read_lock held.
     */
    #define for_each_dev_addr(dev, ha) \
    		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
    
    /* These functions live elsewhere (drivers/net/net_init.c, but related) */
    
    extern void		ether_setup(struct net_device *dev);
    
    /* Support for loadable net-drivers */
    extern struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
    				       void (*setup)(struct net_device *),
    				       unsigned int queue_count);
    #define alloc_netdev(sizeof_priv, name, setup) \
    	alloc_netdev_mq(sizeof_priv, name, setup, 1)
    extern int		register_netdev(struct net_device *dev);
    extern void		unregister_netdev(struct net_device *dev);
    
    /* General hardware address lists handling functions */
    extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
    				  struct netdev_hw_addr_list *from_list,
    				  int addr_len, unsigned char addr_type);
    extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
    				   struct netdev_hw_addr_list *from_list,
    				   int addr_len, unsigned char addr_type);
    extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
    			  struct netdev_hw_addr_list *from_list,
    			  int addr_len);
    extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
    			     struct netdev_hw_addr_list *from_list,
    			     int addr_len);
    extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
    extern void __hw_addr_init(struct netdev_hw_addr_list *list);
    
    /* Functions used for device addresses handling */
    extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
    			unsigned char addr_type);
    extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
    			unsigned char addr_type);
    extern int dev_addr_add_multiple(struct net_device *to_dev,
    				 struct net_device *from_dev,
    				 unsigned char addr_type);
    extern int dev_addr_del_multiple(struct net_device *to_dev,
    				 struct net_device *from_dev,
    				 unsigned char addr_type);
    extern void dev_addr_flush(struct net_device *dev);
    extern int dev_addr_init(struct net_device *dev);
    
    /* Functions used for unicast addresses handling */
    extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
    extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
    extern int dev_uc_sync(struct net_device *to, struct net_device *from);
    extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
    extern void dev_uc_flush(struct net_device *dev);
    extern void dev_uc_init(struct net_device *dev);
    
    /* Functions used for multicast addresses handling */
    extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
    extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
    extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
    extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
    extern int dev_mc_sync(struct net_device *to, struct net_device *from);
    extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
    extern void dev_mc_flush(struct net_device *dev);
    extern void dev_mc_init(struct net_device *dev);
    
    /* Functions used for secondary unicast and multicast support */
    extern void		dev_set_rx_mode(struct net_device *dev);
    extern void		__dev_set_rx_mode(struct net_device *dev);
    extern int		dev_set_promiscuity(struct net_device *dev, int inc);
    extern int		dev_set_allmulti(struct net_device *dev, int inc);
    extern void		netdev_state_change(struct net_device *dev);
    extern int		netdev_bonding_change(struct net_device *dev,
    					      unsigned long event);
    extern void		netdev_features_change(struct net_device *dev);
    /* Load a device via the kmod */
    extern void		dev_load(struct net *net, const char *name);
    extern void		dev_mcast_init(void);
    extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
    					       struct rtnl_link_stats64 *storage);
    extern void		dev_txq_stats_fold(const struct net_device *dev,
    					   struct rtnl_link_stats64 *stats);
    
    extern int		netdev_max_backlog;
    extern int		netdev_tstamp_prequeue;
    extern int		weight_p;
    extern int		netdev_set_master(struct net_device *dev, struct net_device *master);
    extern int skb_checksum_help(struct sk_buff *skb);
    extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features);
    #ifdef CONFIG_BUG
    extern void netdev_rx_csum_fault(struct net_device *dev);
    #else
    static inline void netdev_rx_csum_fault(struct net_device *dev)
    {
    }
    #endif
    /* rx skb timestamps */
    extern void		net_enable_timestamp(void);
    extern void		net_disable_timestamp(void);
    
    #ifdef CONFIG_PROC_FS
    extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
    extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
    extern void dev_seq_stop(struct seq_file *seq, void *v);
    #endif
    
    extern int netdev_class_create_file(struct class_attribute *class_attr);
    extern void netdev_class_remove_file(struct class_attribute *class_attr);
    
    extern struct kobj_ns_type_operations net_ns_type_operations;
    
    extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
    
    extern void linkwatch_run_queue(void);
    
    unsigned long netdev_increment_features(unsigned long all, unsigned long one,
    					unsigned long mask);
    unsigned long netdev_fix_features(unsigned long features, const char *name);
    
    void netif_stacked_transfer_operstate(const struct net_device *rootdev,
    					struct net_device *dev);
    
    static inline int net_gso_ok(int features, int gso_type)
    {
    	int feature = gso_type << NETIF_F_GSO_SHIFT;
    	return (features & feature) == feature;
    }
    
    static inline int skb_gso_ok(struct sk_buff *skb, int features)
    {
    	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
    	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
    }
    
    static inline int netif_needs_gso(struct net_device *dev, struct sk_buff *skb)
    {
    	if (skb_is_gso(skb)) {
    		int features = dev->features;
    
    		if (skb->protocol == htons(ETH_P_8021Q) || skb->vlan_tci)
    			features &= dev->vlan_features;
    
    		return (!skb_gso_ok(skb, features) ||
    			unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
    	}
    
    	return 0;
    }
    
    static inline void netif_set_gso_max_size(struct net_device *dev,
    					  unsigned int size)
    {
    	dev->gso_max_size = size;
    }
    
    extern int __skb_bond_should_drop(struct sk_buff *skb,
    				  struct net_device *master);
    
    static inline int skb_bond_should_drop(struct sk_buff *skb,
    				       struct net_device *master)
    {
    	if (master)
    		return __skb_bond_should_drop(skb, master);
    	return 0;
    }
    
    extern struct pernet_operations __net_initdata loopback_net_ops;
    
    static inline int dev_ethtool_get_settings(struct net_device *dev,
    					   struct ethtool_cmd *cmd)
    {
    	if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
    		return -EOPNOTSUPP;
    	return dev->ethtool_ops->get_settings(dev, cmd);
    }
    
    static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
    {
    	if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
    		return 0;
    	return dev->ethtool_ops->get_rx_csum(dev);
    }
    
    static inline u32 dev_ethtool_get_flags(struct net_device *dev)
    {
    	if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
    		return 0;
    	return dev->ethtool_ops->get_flags(dev);
    }
    
    /* Logging, debugging and troubleshooting/diagnostic helpers. */
    
    /* netdev_printk helpers, similar to dev_printk */
    
    static inline const char *netdev_name(const struct net_device *dev)
    {
    	if (dev->reg_state != NETREG_REGISTERED)
    		return "(unregistered net_device)";
    	return dev->name;
    }
    
    extern int netdev_printk(const char *level, const struct net_device *dev,
    			 const char *format, ...)
    	__attribute__ ((format (printf, 3, 4)));
    extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
    	__attribute__ ((format (printf, 2, 3)));
    extern int netdev_alert(const struct net_device *dev, const char *format, ...)
    	__attribute__ ((format (printf, 2, 3)));
    extern int netdev_crit(const struct net_device *dev, const char *format, ...)
    	__attribute__ ((format (printf, 2, 3)));
    extern int netdev_err(const struct net_device *dev, const char *format, ...)
    	__attribute__ ((format (printf, 2, 3)));
    extern int netdev_warn(const struct net_device *dev, const char *format, ...)
    	__attribute__ ((format (printf, 2, 3)));
    extern int netdev_notice(const struct net_device *dev, const char *format, ...)
    	__attribute__ ((format (printf, 2, 3)));
    extern int netdev_info(const struct net_device *dev, const char *format, ...)
    	__attribute__ ((format (printf, 2, 3)));
    
    #if defined(DEBUG)
    #define netdev_dbg(__dev, format, args...)			\
    	netdev_printk(KERN_DEBUG, __dev, format, ##args)
    #elif defined(CONFIG_DYNAMIC_DEBUG)
    #define netdev_dbg(__dev, format, args...)			\
    do {								\
    	dynamic_dev_dbg((__dev)->dev.parent, "%s: " format,	\
    			netdev_name(__dev), ##args);		\
    } while (0)
    #else
    #define netdev_dbg(__dev, format, args...)			\
    ({								\
    	if (0)							\
    		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
    	0;							\
    })
    #endif
    
    #if defined(VERBOSE_DEBUG)
    #define netdev_vdbg	netdev_dbg
    #else
    
    #define netdev_vdbg(dev, format, args...)			\
    ({								\
    	if (0)							\
    		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
    	0;							\
    })
    #endif
    
    /*
     * netdev_WARN() acts like dev_printk(), but with the key difference
     * of using a WARN/WARN_ON to get the message out, including the
     * file/line information and a backtrace.
     */
    #define netdev_WARN(dev, format, args...)			\
    	WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
    
    /* netif printk helpers, similar to netdev_printk */
    
    #define netif_printk(priv, type, level, dev, fmt, args...)	\
    do {					  			\
    	if (netif_msg_##type(priv))				\
    		netdev_printk(level, (dev), fmt, ##args);	\
    } while (0)
    
    #define netif_level(level, priv, type, dev, fmt, args...)	\
    do {								\
    	if (netif_msg_##type(priv))				\
    		netdev_##level(dev, fmt, ##args);		\
    } while (0)
    
    #define netif_emerg(priv, type, dev, fmt, args...)		\
    	netif_level(emerg, priv, type, dev, fmt, ##args)
    #define netif_alert(priv, type, dev, fmt, args...)		\
    	netif_level(alert, priv, type, dev, fmt, ##args)
    #define netif_crit(priv, type, dev, fmt, args...)		\
    	netif_level(crit, priv, type, dev, fmt, ##args)
    #define netif_err(priv, type, dev, fmt, args...)		\
    	netif_level(err, priv, type, dev, fmt, ##args)
    #define netif_warn(priv, type, dev, fmt, args...)		\
    	netif_level(warn, priv, type, dev, fmt, ##args)
    #define netif_notice(priv, type, dev, fmt, args...)		\
    	netif_level(notice, priv, type, dev, fmt, ##args)
    #define netif_info(priv, type, dev, fmt, args...)		\
    	netif_level(info, priv, type, dev, fmt, ##args)
    
    #if defined(DEBUG)
    #define netif_dbg(priv, type, dev, format, args...)		\
    	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
    #elif defined(CONFIG_DYNAMIC_DEBUG)
    #define netif_dbg(priv, type, netdev, format, args...)		\
    do {								\
    	if (netif_msg_##type(priv))				\
    		dynamic_dev_dbg((netdev)->dev.parent,		\
    				"%s: " format,			\
    				netdev_name(netdev), ##args);	\
    } while (0)
    #else
    #define netif_dbg(priv, type, dev, format, args...)			\
    ({									\
    	if (0)								\
    		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
    	0;								\
    })
    #endif
    
    #if defined(VERBOSE_DEBUG)
    #define netif_vdbg	netif_dbg
    #else
    #define netif_vdbg(priv, type, dev, format, args...)		\
    ({								\
    	if (0)							\
    		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
    	0;							\
    })
    #endif
    
    #endif /* __KERNEL__ */
    
    #endif	/* _LINUX_NETDEVICE_H */