Skip to content
Snippets Groups Projects
Select Git revision
  • f8cdc3743025fdf24e70ecd774442e63ed68654c
  • openEuler-1.0-LTS default protected
  • openEuler-22.09
  • OLK-5.10
  • openEuler-22.03-LTS
  • openEuler-22.03-LTS-Ascend
  • master
  • openEuler-22.03-LTS-LoongArch-NW
  • openEuler-22.09-HCK
  • openEuler-20.03-LTS-SP3
  • openEuler-21.09
  • openEuler-21.03
  • openEuler-20.09
  • 4.19.90-2210.5.0
  • 5.10.0-123.0.0
  • 5.10.0-60.63.0
  • 5.10.0-60.62.0
  • 4.19.90-2210.4.0
  • 5.10.0-121.0.0
  • 5.10.0-60.61.0
  • 4.19.90-2210.3.0
  • 5.10.0-60.60.0
  • 5.10.0-120.0.0
  • 5.10.0-60.59.0
  • 5.10.0-119.0.0
  • 4.19.90-2210.2.0
  • 4.19.90-2210.1.0
  • 5.10.0-118.0.0
  • 5.10.0-106.19.0
  • 5.10.0-60.58.0
  • 4.19.90-2209.6.0
  • 5.10.0-106.18.0
  • 5.10.0-106.17.0
33 results

pgtable.c

  • pgtable.c 20.97 KiB
    // SPDX-License-Identifier: GPL-2.0
    #include <linux/mm.h>
    #include <linux/gfp.h>
    #include <linux/hugetlb.h>
    #include <asm/pgalloc.h>
    #include <asm/pgtable.h>
    #include <asm/tlb.h>
    #include <asm/fixmap.h>
    #include <asm/mtrr.h>
    
    #ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
    phys_addr_t physical_mask __ro_after_init = (1ULL << __PHYSICAL_MASK_SHIFT) - 1;
    EXPORT_SYMBOL(physical_mask);
    #endif
    
    #define PGALLOC_GFP (GFP_KERNEL_ACCOUNT | __GFP_ZERO)
    
    #ifdef CONFIG_HIGHPTE
    #define PGALLOC_USER_GFP __GFP_HIGHMEM
    #else
    #define PGALLOC_USER_GFP 0
    #endif
    
    gfp_t __userpte_alloc_gfp = PGALLOC_GFP | PGALLOC_USER_GFP;
    
    pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
    {
    	return (pte_t *)__get_free_page(PGALLOC_GFP & ~__GFP_ACCOUNT);
    }
    
    pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
    {
    	struct page *pte;
    
    	pte = alloc_pages(__userpte_alloc_gfp, 0);
    	if (!pte)
    		return NULL;
    	if (!pgtable_page_ctor(pte)) {
    		__free_page(pte);
    		return NULL;
    	}
    	return pte;
    }
    
    static int __init setup_userpte(char *arg)
    {
    	if (!arg)
    		return -EINVAL;
    
    	/*
    	 * "userpte=nohigh" disables allocation of user pagetables in
    	 * high memory.
    	 */
    	if (strcmp(arg, "nohigh") == 0)
    		__userpte_alloc_gfp &= ~__GFP_HIGHMEM;
    	else
    		return -EINVAL;
    	return 0;
    }
    early_param("userpte", setup_userpte);
    
    void ___pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
    {
    	pgtable_page_dtor(pte);
    	paravirt_release_pte(page_to_pfn(pte));
    	paravirt_tlb_remove_table(tlb, pte);
    }
    
    #if CONFIG_PGTABLE_LEVELS > 2
    void ___pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
    {
    	struct page *page = virt_to_page(pmd);
    	paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
    	/*
    	 * NOTE! For PAE, any changes to the top page-directory-pointer-table
    	 * entries need a full cr3 reload to flush.
    	 */
    #ifdef CONFIG_X86_PAE
    	tlb->need_flush_all = 1;
    #endif
    	pgtable_pmd_page_dtor(page);
    	paravirt_tlb_remove_table(tlb, page);
    }
    
    #if CONFIG_PGTABLE_LEVELS > 3
    void ___pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
    {
    	paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
    	paravirt_tlb_remove_table(tlb, virt_to_page(pud));
    }
    
    #if CONFIG_PGTABLE_LEVELS > 4
    void ___p4d_free_tlb(struct mmu_gather *tlb, p4d_t *p4d)
    {
    	paravirt_release_p4d(__pa(p4d) >> PAGE_SHIFT);
    	paravirt_tlb_remove_table(tlb, virt_to_page(p4d));
    }
    #endif	/* CONFIG_PGTABLE_LEVELS > 4 */
    #endif	/* CONFIG_PGTABLE_LEVELS > 3 */
    #endif	/* CONFIG_PGTABLE_LEVELS > 2 */
    
    static inline void pgd_list_add(pgd_t *pgd)
    {
    	struct page *page = virt_to_page(pgd);
    
    	list_add(&page->lru, &pgd_list);
    }
    
    static inline void pgd_list_del(pgd_t *pgd)
    {
    	struct page *page = virt_to_page(pgd);
    
    	list_del(&page->lru);
    }
    
    #define UNSHARED_PTRS_PER_PGD				\
    	(SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
    #define MAX_UNSHARED_PTRS_PER_PGD			\
    	max_t(size_t, KERNEL_PGD_BOUNDARY, PTRS_PER_PGD)
    
    
    static void pgd_set_mm(pgd_t *pgd, struct mm_struct *mm)
    {
    	virt_to_page(pgd)->pt_mm = mm;
    }
    
    struct mm_struct *pgd_page_get_mm(struct page *page)
    {
    	return page->pt_mm;
    }
    
    static void pgd_ctor(struct mm_struct *mm, pgd_t *pgd)
    {
    	/* If the pgd points to a shared pagetable level (either the
    	   ptes in non-PAE, or shared PMD in PAE), then just copy the
    	   references from swapper_pg_dir. */
    	if (CONFIG_PGTABLE_LEVELS == 2 ||
    	    (CONFIG_PGTABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
    	    CONFIG_PGTABLE_LEVELS >= 4) {
    		clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
    				swapper_pg_dir + KERNEL_PGD_BOUNDARY,
    				KERNEL_PGD_PTRS);
    	}
    
    	/* list required to sync kernel mapping updates */
    	if (!SHARED_KERNEL_PMD) {
    		pgd_set_mm(pgd, mm);
    		pgd_list_add(pgd);
    	}
    }
    
    static void pgd_dtor(pgd_t *pgd)
    {
    	if (SHARED_KERNEL_PMD)
    		return;
    
    	spin_lock(&pgd_lock);
    	pgd_list_del(pgd);
    	spin_unlock(&pgd_lock);
    }
    
    /*
     * List of all pgd's needed for non-PAE so it can invalidate entries
     * in both cached and uncached pgd's; not needed for PAE since the
     * kernel pmd is shared. If PAE were not to share the pmd a similar
     * tactic would be needed. This is essentially codepath-based locking
     * against pageattr.c; it is the unique case in which a valid change
     * of kernel pagetables can't be lazily synchronized by vmalloc faults.
     * vmalloc faults work because attached pagetables are never freed.
     * -- nyc
     */
    
    #ifdef CONFIG_X86_PAE
    /*
     * In PAE mode, we need to do a cr3 reload (=tlb flush) when
     * updating the top-level pagetable entries to guarantee the
     * processor notices the update.  Since this is expensive, and
     * all 4 top-level entries are used almost immediately in a
     * new process's life, we just pre-populate them here.
     *
     * Also, if we're in a paravirt environment where the kernel pmd is
     * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
     * and initialize the kernel pmds here.
     */
    #define PREALLOCATED_PMDS	UNSHARED_PTRS_PER_PGD
    #define MAX_PREALLOCATED_PMDS	MAX_UNSHARED_PTRS_PER_PGD
    
    /*
     * We allocate separate PMDs for the kernel part of the user page-table
     * when PTI is enabled. We need them to map the per-process LDT into the
     * user-space page-table.
     */
    #define PREALLOCATED_USER_PMDS	 (static_cpu_has(X86_FEATURE_PTI) ? \
    					KERNEL_PGD_PTRS : 0)
    #define MAX_PREALLOCATED_USER_PMDS KERNEL_PGD_PTRS
    
    void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
    {
    	paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
    
    	/* Note: almost everything apart from _PAGE_PRESENT is
    	   reserved at the pmd (PDPT) level. */
    	set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
    
    	/*
    	 * According to Intel App note "TLBs, Paging-Structure Caches,
    	 * and Their Invalidation", April 2007, document 317080-001,
    	 * section 8.1: in PAE mode we explicitly have to flush the
    	 * TLB via cr3 if the top-level pgd is changed...
    	 */
    	flush_tlb_mm(mm);
    }
    #else  /* !CONFIG_X86_PAE */
    
    /* No need to prepopulate any pagetable entries in non-PAE modes. */
    #define PREALLOCATED_PMDS	0
    #define MAX_PREALLOCATED_PMDS	0
    #define PREALLOCATED_USER_PMDS	 0
    #define MAX_PREALLOCATED_USER_PMDS 0
    #endif	/* CONFIG_X86_PAE */
    
    static void free_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
    {
    	int i;
    
    	for (i = 0; i < count; i++)
    		if (pmds[i]) {
    			pgtable_pmd_page_dtor(virt_to_page(pmds[i]));
    			free_page((unsigned long)pmds[i]);
    			mm_dec_nr_pmds(mm);
    		}
    }
    
    static int preallocate_pmds(struct mm_struct *mm, pmd_t *pmds[], int count)
    {
    	int i;
    	bool failed = false;
    	gfp_t gfp = PGALLOC_GFP;
    
    	if (mm == &init_mm)
    		gfp &= ~__GFP_ACCOUNT;
    
    	for (i = 0; i < count; i++) {
    		pmd_t *pmd = (pmd_t *)__get_free_page(gfp);
    		if (!pmd)
    			failed = true;
    		if (pmd && !pgtable_pmd_page_ctor(virt_to_page(pmd))) {
    			free_page((unsigned long)pmd);
    			pmd = NULL;
    			failed = true;
    		}
    		if (pmd)
    			mm_inc_nr_pmds(mm);
    		pmds[i] = pmd;
    	}
    
    	if (failed) {
    		free_pmds(mm, pmds, count);
    		return -ENOMEM;
    	}
    
    	return 0;
    }
    
    /*
     * Mop up any pmd pages which may still be attached to the pgd.
     * Normally they will be freed by munmap/exit_mmap, but any pmd we
     * preallocate which never got a corresponding vma will need to be
     * freed manually.
     */
    static void mop_up_one_pmd(struct mm_struct *mm, pgd_t *pgdp)
    {
    	pgd_t pgd = *pgdp;
    
    	if (pgd_val(pgd) != 0) {
    		pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
    
    		pgd_clear(pgdp);
    
    		paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
    		pmd_free(mm, pmd);
    		mm_dec_nr_pmds(mm);
    	}
    }
    
    static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
    {
    	int i;
    
    	for (i = 0; i < PREALLOCATED_PMDS; i++)
    		mop_up_one_pmd(mm, &pgdp[i]);
    
    #ifdef CONFIG_PAGE_TABLE_ISOLATION
    
    	if (!static_cpu_has(X86_FEATURE_PTI))
    		return;
    
    	pgdp = kernel_to_user_pgdp(pgdp);
    
    	for (i = 0; i < PREALLOCATED_USER_PMDS; i++)
    		mop_up_one_pmd(mm, &pgdp[i + KERNEL_PGD_BOUNDARY]);
    #endif
    }
    
    static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
    {
    	p4d_t *p4d;
    	pud_t *pud;
    	int i;
    
    	if (PREALLOCATED_PMDS == 0) /* Work around gcc-3.4.x bug */
    		return;
    
    	p4d = p4d_offset(pgd, 0);
    	pud = pud_offset(p4d, 0);
    
    	for (i = 0; i < PREALLOCATED_PMDS; i++, pud++) {
    		pmd_t *pmd = pmds[i];
    
    		if (i >= KERNEL_PGD_BOUNDARY)
    			memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
    			       sizeof(pmd_t) * PTRS_PER_PMD);
    
    		pud_populate(mm, pud, pmd);
    	}
    }
    
    #ifdef CONFIG_PAGE_TABLE_ISOLATION
    static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
    				     pgd_t *k_pgd, pmd_t *pmds[])
    {
    	pgd_t *s_pgd = kernel_to_user_pgdp(swapper_pg_dir);
    	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
    	p4d_t *u_p4d;
    	pud_t *u_pud;
    	int i;
    
    	u_p4d = p4d_offset(u_pgd, 0);
    	u_pud = pud_offset(u_p4d, 0);
    
    	s_pgd += KERNEL_PGD_BOUNDARY;
    	u_pud += KERNEL_PGD_BOUNDARY;
    
    	for (i = 0; i < PREALLOCATED_USER_PMDS; i++, u_pud++, s_pgd++) {
    		pmd_t *pmd = pmds[i];
    
    		memcpy(pmd, (pmd_t *)pgd_page_vaddr(*s_pgd),
    		       sizeof(pmd_t) * PTRS_PER_PMD);
    
    		pud_populate(mm, u_pud, pmd);
    	}
    
    }
    #else
    static void pgd_prepopulate_user_pmd(struct mm_struct *mm,
    				     pgd_t *k_pgd, pmd_t *pmds[])
    {
    }
    #endif
    /*
     * Xen paravirt assumes pgd table should be in one page. 64 bit kernel also
     * assumes that pgd should be in one page.
     *
     * But kernel with PAE paging that is not running as a Xen domain
     * only needs to allocate 32 bytes for pgd instead of one page.
     */
    #ifdef CONFIG_X86_PAE
    
    #include <linux/slab.h>
    
    #define PGD_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
    #define PGD_ALIGN	32
    
    static struct kmem_cache *pgd_cache;
    
    static int __init pgd_cache_init(void)
    {
    	/*
    	 * When PAE kernel is running as a Xen domain, it does not use
    	 * shared kernel pmd. And this requires a whole page for pgd.
    	 */
    	if (!SHARED_KERNEL_PMD)
    		return 0;
    
    	/*
    	 * when PAE kernel is not running as a Xen domain, it uses
    	 * shared kernel pmd. Shared kernel pmd does not require a whole
    	 * page for pgd. We are able to just allocate a 32-byte for pgd.
    	 * During boot time, we create a 32-byte slab for pgd table allocation.
    	 */
    	pgd_cache = kmem_cache_create("pgd_cache", PGD_SIZE, PGD_ALIGN,
    				      SLAB_PANIC, NULL);
    	return 0;
    }
    core_initcall(pgd_cache_init);
    
    static inline pgd_t *_pgd_alloc(void)
    {
    	/*
    	 * If no SHARED_KERNEL_PMD, PAE kernel is running as a Xen domain.
    	 * We allocate one page for pgd.
    	 */
    	if (!SHARED_KERNEL_PMD)
    		return (pgd_t *)__get_free_pages(PGALLOC_GFP,
    						 PGD_ALLOCATION_ORDER);
    
    	/*
    	 * Now PAE kernel is not running as a Xen domain. We can allocate
    	 * a 32-byte slab for pgd to save memory space.
    	 */
    	return kmem_cache_alloc(pgd_cache, PGALLOC_GFP);
    }
    
    static inline void _pgd_free(pgd_t *pgd)
    {
    	if (!SHARED_KERNEL_PMD)
    		free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
    	else
    		kmem_cache_free(pgd_cache, pgd);
    }
    #else
    
    static inline pgd_t *_pgd_alloc(void)
    {
    	return (pgd_t *)__get_free_pages(PGALLOC_GFP, PGD_ALLOCATION_ORDER);
    }
    
    static inline void _pgd_free(pgd_t *pgd)
    {
    	free_pages((unsigned long)pgd, PGD_ALLOCATION_ORDER);
    }
    #endif /* CONFIG_X86_PAE */
    
    pgd_t *pgd_alloc(struct mm_struct *mm)
    {
    	pgd_t *pgd;
    	pmd_t *u_pmds[MAX_PREALLOCATED_USER_PMDS];
    	pmd_t *pmds[MAX_PREALLOCATED_PMDS];
    
    	pgd = _pgd_alloc();
    
    	if (pgd == NULL)
    		goto out;
    
    	mm->pgd = pgd;
    
    	if (preallocate_pmds(mm, pmds, PREALLOCATED_PMDS) != 0)
    		goto out_free_pgd;
    
    	if (preallocate_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS) != 0)
    		goto out_free_pmds;
    
    	if (paravirt_pgd_alloc(mm) != 0)
    		goto out_free_user_pmds;
    
    	/*
    	 * Make sure that pre-populating the pmds is atomic with
    	 * respect to anything walking the pgd_list, so that they
    	 * never see a partially populated pgd.
    	 */
    	spin_lock(&pgd_lock);
    
    	pgd_ctor(mm, pgd);
    	pgd_prepopulate_pmd(mm, pgd, pmds);
    	pgd_prepopulate_user_pmd(mm, pgd, u_pmds);
    
    	spin_unlock(&pgd_lock);
    
    	return pgd;
    
    out_free_user_pmds:
    	free_pmds(mm, u_pmds, PREALLOCATED_USER_PMDS);
    out_free_pmds:
    	free_pmds(mm, pmds, PREALLOCATED_PMDS);
    out_free_pgd:
    	_pgd_free(pgd);
    out:
    	return NULL;
    }
    
    void pgd_free(struct mm_struct *mm, pgd_t *pgd)
    {
    	pgd_mop_up_pmds(mm, pgd);
    	pgd_dtor(pgd);
    	paravirt_pgd_free(mm, pgd);
    	_pgd_free(pgd);
    }
    
    /*
     * Used to set accessed or dirty bits in the page table entries
     * on other architectures. On x86, the accessed and dirty bits
     * are tracked by hardware. However, do_wp_page calls this function
     * to also make the pte writeable at the same time the dirty bit is
     * set. In that case we do actually need to write the PTE.
     */
    int ptep_set_access_flags(struct vm_area_struct *vma,
    			  unsigned long address, pte_t *ptep,
    			  pte_t entry, int dirty)
    {
    	int changed = !pte_same(*ptep, entry);
    
    	if (changed && dirty)
    		set_pte(ptep, entry);
    
    	return changed;
    }
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    int pmdp_set_access_flags(struct vm_area_struct *vma,
    			  unsigned long address, pmd_t *pmdp,
    			  pmd_t entry, int dirty)
    {
    	int changed = !pmd_same(*pmdp, entry);
    
    	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
    
    	if (changed && dirty) {
    		set_pmd(pmdp, entry);
    		/*
    		 * We had a write-protection fault here and changed the pmd
    		 * to to more permissive. No need to flush the TLB for that,
    		 * #PF is architecturally guaranteed to do that and in the
    		 * worst-case we'll generate a spurious fault.
    		 */
    	}
    
    	return changed;
    }
    
    int pudp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
    			  pud_t *pudp, pud_t entry, int dirty)
    {
    	int changed = !pud_same(*pudp, entry);
    
    	VM_BUG_ON(address & ~HPAGE_PUD_MASK);
    
    	if (changed && dirty) {
    		set_pud(pudp, entry);
    		/*
    		 * We had a write-protection fault here and changed the pud
    		 * to to more permissive. No need to flush the TLB for that,
    		 * #PF is architecturally guaranteed to do that and in the
    		 * worst-case we'll generate a spurious fault.
    		 */
    	}
    
    	return changed;
    }
    #endif
    
    int ptep_test_and_clear_young(struct vm_area_struct *vma,
    			      unsigned long addr, pte_t *ptep)
    {
    	int ret = 0;
    
    	if (pte_young(*ptep))
    		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
    					 (unsigned long *) &ptep->pte);
    
    	return ret;
    }
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    int pmdp_test_and_clear_young(struct vm_area_struct *vma,
    			      unsigned long addr, pmd_t *pmdp)
    {
    	int ret = 0;
    
    	if (pmd_young(*pmdp))
    		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
    					 (unsigned long *)pmdp);
    
    	return ret;
    }
    int pudp_test_and_clear_young(struct vm_area_struct *vma,
    			      unsigned long addr, pud_t *pudp)
    {
    	int ret = 0;
    
    	if (pud_young(*pudp))
    		ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
    					 (unsigned long *)pudp);
    
    	return ret;
    }
    #endif
    
    int ptep_clear_flush_young(struct vm_area_struct *vma,
    			   unsigned long address, pte_t *ptep)
    {
    	/*
    	 * On x86 CPUs, clearing the accessed bit without a TLB flush
    	 * doesn't cause data corruption. [ It could cause incorrect
    	 * page aging and the (mistaken) reclaim of hot pages, but the
    	 * chance of that should be relatively low. ]
    	 *
    	 * So as a performance optimization don't flush the TLB when
    	 * clearing the accessed bit, it will eventually be flushed by
    	 * a context switch or a VM operation anyway. [ In the rare
    	 * event of it not getting flushed for a long time the delay
    	 * shouldn't really matter because there's no real memory
    	 * pressure for swapout to react to. ]
    	 */
    	return ptep_test_and_clear_young(vma, address, ptep);
    }
    
    #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    int pmdp_clear_flush_young(struct vm_area_struct *vma,
    			   unsigned long address, pmd_t *pmdp)
    {
    	int young;
    
    	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
    
    	young = pmdp_test_and_clear_young(vma, address, pmdp);
    	if (young)
    		flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
    
    	return young;
    }
    #endif
    
    /**
     * reserve_top_address - reserves a hole in the top of kernel address space
     * @reserve - size of hole to reserve
     *
     * Can be used to relocate the fixmap area and poke a hole in the top
     * of kernel address space to make room for a hypervisor.
     */
    void __init reserve_top_address(unsigned long reserve)
    {
    #ifdef CONFIG_X86_32
    	BUG_ON(fixmaps_set > 0);
    	__FIXADDR_TOP = round_down(-reserve, 1 << PMD_SHIFT) - PAGE_SIZE;
    	printk(KERN_INFO "Reserving virtual address space above 0x%08lx (rounded to 0x%08lx)\n",
    	       -reserve, __FIXADDR_TOP + PAGE_SIZE);
    #endif
    }
    
    int fixmaps_set;
    
    void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
    {
    	unsigned long address = __fix_to_virt(idx);
    
    #ifdef CONFIG_X86_64
           /*
    	* Ensure that the static initial page tables are covering the
    	* fixmap completely.
    	*/
    	BUILD_BUG_ON(__end_of_permanent_fixed_addresses >
    		     (FIXMAP_PMD_NUM * PTRS_PER_PTE));
    #endif
    
    	if (idx >= __end_of_fixed_addresses) {
    		BUG();
    		return;
    	}
    	set_pte_vaddr(address, pte);
    	fixmaps_set++;
    }
    
    void native_set_fixmap(unsigned /* enum fixed_addresses */ idx,
    		       phys_addr_t phys, pgprot_t flags)
    {
    	/* Sanitize 'prot' against any unsupported bits: */
    	pgprot_val(flags) &= __default_kernel_pte_mask;
    
    	__native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
    }
    
    #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
    #ifdef CONFIG_X86_5LEVEL
    /**
     * p4d_set_huge - setup kernel P4D mapping
     *
     * No 512GB pages yet -- always return 0
     */
    int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
    {
    	return 0;
    }
    
    /**
     * p4d_clear_huge - clear kernel P4D mapping when it is set
     *
     * No 512GB pages yet -- always return 0
     */
    int p4d_clear_huge(p4d_t *p4d)
    {
    	return 0;
    }
    #endif
    
    /**
     * pud_set_huge - setup kernel PUD mapping
     *
     * MTRRs can override PAT memory types with 4KiB granularity. Therefore, this
     * function sets up a huge page only if any of the following conditions are met:
     *
     * - MTRRs are disabled, or
     *
     * - MTRRs are enabled and the range is completely covered by a single MTRR, or
     *
     * - MTRRs are enabled and the corresponding MTRR memory type is WB, which
     *   has no effect on the requested PAT memory type.
     *
     * Callers should try to decrease page size (1GB -> 2MB -> 4K) if the bigger
     * page mapping attempt fails.
     *
     * Returns 1 on success and 0 on failure.
     */
    int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
    {
    	u8 mtrr, uniform;
    
    	mtrr = mtrr_type_lookup(addr, addr + PUD_SIZE, &uniform);
    	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
    	    (mtrr != MTRR_TYPE_WRBACK))
    		return 0;
    
    	/* Bail out if we are we on a populated non-leaf entry: */
    	if (pud_present(*pud) && !pud_huge(*pud))
    		return 0;
    
    	prot = pgprot_4k_2_large(prot);
    
    	set_pte((pte_t *)pud, pfn_pte(
    		(u64)addr >> PAGE_SHIFT,
    		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
    
    	return 1;
    }
    
    /**
     * pmd_set_huge - setup kernel PMD mapping
     *
     * See text over pud_set_huge() above.
     *
     * Returns 1 on success and 0 on failure.
     */
    int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
    {
    	u8 mtrr, uniform;
    
    	mtrr = mtrr_type_lookup(addr, addr + PMD_SIZE, &uniform);
    	if ((mtrr != MTRR_TYPE_INVALID) && (!uniform) &&
    	    (mtrr != MTRR_TYPE_WRBACK)) {
    		pr_warn_once("%s: Cannot satisfy [mem %#010llx-%#010llx] with a huge-page mapping due to MTRR override.\n",
    			     __func__, addr, addr + PMD_SIZE);
    		return 0;
    	}
    
    	/* Bail out if we are we on a populated non-leaf entry: */
    	if (pmd_present(*pmd) && !pmd_huge(*pmd))
    		return 0;
    
    	prot = pgprot_4k_2_large(prot);
    
    	set_pte((pte_t *)pmd, pfn_pte(
    		(u64)addr >> PAGE_SHIFT,
    		__pgprot(pgprot_val(prot) | _PAGE_PSE)));
    
    	return 1;
    }
    
    /**
     * pud_clear_huge - clear kernel PUD mapping when it is set
     *
     * Returns 1 on success and 0 on failure (no PUD map is found).
     */
    int pud_clear_huge(pud_t *pud)
    {
    	if (pud_large(*pud)) {
    		pud_clear(pud);
    		return 1;
    	}
    
    	return 0;
    }
    
    /**
     * pmd_clear_huge - clear kernel PMD mapping when it is set
     *
     * Returns 1 on success and 0 on failure (no PMD map is found).
     */
    int pmd_clear_huge(pmd_t *pmd)
    {
    	if (pmd_large(*pmd)) {
    		pmd_clear(pmd);
    		return 1;
    	}
    
    	return 0;
    }
    
    #ifdef CONFIG_X86_64
    /**
     * pud_free_pmd_page - Clear pud entry and free pmd page.
     * @pud: Pointer to a PUD.
     * @addr: Virtual address associated with pud.
     *
     * Context: The pud range has been unmapped and TLB purged.
     * Return: 1 if clearing the entry succeeded. 0 otherwise.
     *
     * NOTE: Callers must allow a single page allocation.
     */
    int pud_free_pmd_page(pud_t *pud, unsigned long addr)
    {
    	pmd_t *pmd, *pmd_sv;
    	pte_t *pte;
    	int i;
    
    	if (pud_none(*pud))
    		return 1;
    
    	pmd = (pmd_t *)pud_page_vaddr(*pud);
    	pmd_sv = (pmd_t *)__get_free_page(GFP_KERNEL);
    	if (!pmd_sv)
    		return 0;
    
    	for (i = 0; i < PTRS_PER_PMD; i++) {
    		pmd_sv[i] = pmd[i];
    		if (!pmd_none(pmd[i]))
    			pmd_clear(&pmd[i]);
    	}
    
    	pud_clear(pud);
    
    	/* INVLPG to clear all paging-structure caches */
    	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
    
    	for (i = 0; i < PTRS_PER_PMD; i++) {
    		if (!pmd_none(pmd_sv[i])) {
    			pte = (pte_t *)pmd_page_vaddr(pmd_sv[i]);
    			free_page((unsigned long)pte);
    		}
    	}
    
    	free_page((unsigned long)pmd_sv);
    	free_page((unsigned long)pmd);
    
    	return 1;
    }
    
    /**
     * pmd_free_pte_page - Clear pmd entry and free pte page.
     * @pmd: Pointer to a PMD.
     * @addr: Virtual address associated with pmd.
     *
     * Context: The pmd range has been unmapped and TLB purged.
     * Return: 1 if clearing the entry succeeded. 0 otherwise.
     */
    int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
    {
    	pte_t *pte;
    
    	if (pmd_none(*pmd))
    		return 1;
    
    	pte = (pte_t *)pmd_page_vaddr(*pmd);
    	pmd_clear(pmd);
    
    	/* INVLPG to clear all paging-structure caches */
    	flush_tlb_kernel_range(addr, addr + PAGE_SIZE-1);
    
    	free_page((unsigned long)pte);
    
    	return 1;
    }
    
    #else /* !CONFIG_X86_64 */
    
    int pud_free_pmd_page(pud_t *pud, unsigned long addr)
    {
    	return pud_none(*pud);
    }
    
    /*
     * Disable free page handling on x86-PAE. This assures that ioremap()
     * does not update sync'd pmd entries. See vmalloc_sync_one().
     */
    int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
    {
    	return pmd_none(*pmd);
    }
    
    #endif /* CONFIG_X86_64 */
    #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */