Newer
Older
"""
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""
import unittest
import numpy as np
from automated_test_util import *
@unittest.skip("has bug now, need rewrite")
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def test_masked_fill_aginst_pytorch(test_case):
import numpy as np
import torch
def mask_tensor(shape):
def generator(_):
rng = np.random.default_rng()
np_arr = rng.integers(low=0, high=2, size=shape)
return (
flow.Tensor(np_arr, dtype=flow.int8),
torch.tensor(np_arr, dtype=torch.bool),
)
return generator
for device in ["cpu", "cuda"]:
test_flow_against_pytorch(
test_case,
"masked_fill",
extra_annotations={"mask": flow.Tensor, "value": float},
extra_generators={
"input": random_tensor(ndim=2, dim0=4, dim1=5),
"mask": mask_tensor((4, 5)),
"value": constant(3.14),
},
device=device,
)
test_tensor_against_pytorch(
test_case,
"masked_fill",
extra_annotations={"mask": flow.Tensor, "value": float},
extra_generators={
"input": random_tensor(ndim=2, dim0=4, dim1=5),
"mask": mask_tensor((4, 5)),
"value": constant(3.14),
},
device=device,
)