-
anzhengqi authoredeb40ecc2
train_and_eval_distribute.py 5.02 KiB
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_multinpu."""
import os
import sys
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.context import ParallelMode
from mindspore.communication.management import get_rank, get_group_size, init
from mindspore.common import set_seed
from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel
from src.callbacks import LossCallBack, EvalCallBack
from src.datasets import create_dataset, DataType
from src.metrics import AUCMetric
from src.model_utils.config import config as cfg
from src.model_utils.moxing_adapter import moxing_wrapper
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
def get_WideDeep_net(config):
"""
Get network of wide&deep model.
"""
WideDeep_net = WideDeepModel(config)
loss_net = NetWithLossClass(WideDeep_net, config)
train_net = TrainStepWrap(loss_net, sparse=config.sparse)
eval_net = PredictWithSigmoid(WideDeep_net)
return train_net, eval_net
class ModelBuilder():
"""
ModelBuilder
"""
def __init__(self):
pass
def get_hook(self):
pass
def get_train_hook(self):
hooks = []
callback = LossCallBack()
hooks.append(callback)
if int(os.getenv('DEVICE_ID')) == 0:
pass
return hooks
def get_net(self, config):
return get_WideDeep_net(config)
def train_and_eval(config):
"""
test_train_eval
"""
set_seed(1000)
data_path = config.data_path
batch_size = config.batch_size
sparse = config.sparse
epochs = config.epochs
if config.dataset_type == "tfrecord":
dataset_type = DataType.TFRECORD
elif config.dataset_type == "mindrecord":
dataset_type = DataType.MINDRECORD
else:
dataset_type = DataType.H5
print("epochs is {}".format(epochs))
ds_train = create_dataset(data_path, train_mode=True,
batch_size=batch_size, rank_id=get_rank(),
rank_size=get_group_size(), data_type=dataset_type)
ds_eval = create_dataset(data_path, train_mode=False,
batch_size=batch_size, rank_id=get_rank(),
rank_size=get_group_size(), data_type=dataset_type)
print("ds_train.size: {}".format(ds_train.get_dataset_size()))
print("ds_eval.size: {}".format(ds_eval.get_dataset_size()))
net_builder = ModelBuilder()
train_net, eval_net = net_builder.get_net(config)
train_net.set_train()
auc_metric = AUCMetric()
model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric})
eval_callback = EvalCallBack(model, ds_eval, auc_metric, config)
callback = LossCallBack(config=config)
ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5)
ckpoint_cb = ModelCheckpoint(prefix='widedeep_train',
directory=config.ckpt_path + '/ckpt_' + str(get_rank()) + '/',
config=ckptconfig)
out = model.eval(ds_eval, dataset_sink_mode=(not sparse))
print("=====" * 5 + "model.eval() initialized: {}".format(out))
callback_list = [TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback]
if get_rank() == 0:
callback_list.append(ckpoint_cb)
model.train(epochs, ds_train,
callbacks=callback_list,
sink_size=ds_train.get_dataset_size(),
dataset_sink_mode=(not sparse))
def modelarts_pre_process():
cfg.ckpt_path = cfg.output_path
@moxing_wrapper(pre_process=modelarts_pre_process)
def train_wide_and_deep():
""" train_wide_and_deep """
context.set_context(mode=context.GRAPH_MODE, device_target=cfg.device_target, save_graphs=True)
_enable_graph_kernel = cfg.device_target == "GPU"
if _enable_graph_kernel:
context.set_context(enable_graph_kernel=True)
context.set_context(graph_kernel_flags="--enable_cluster_ops=MatMul")
init()
context.set_context(save_graphs_path='./graphs_of_device_id_'+str(get_rank()))
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=get_group_size(), all_reduce_fusion_config=[6, 12])
train_and_eval(cfg)
if __name__ == "__main__":
train_wide_and_deep()